Exact and Heuristic Algorithms for the Cardinality Constrained P|# ≤Ki|Cmax Problem

Mauro Dell’Amico
DISMI, Università di Modena e Reggio Emilia

Manuel Iori, Silvano Martello, Michele Monaci
DEIS, Università di Bologna
Outline

- Brief Review on P||Cmax
- Brief Review on P|#<=K|Cmax
- Description of P|#<=K|Cmax problem
- Lower bounds
- Reduction criteria
- Heuristics
- Local search procedures
- Scatter Search
- Branch & bound
- Preliminary computational results
- Column generation approach
P||Cmax

In the classical $P||C_{max}$ problem we are given:

- m processors i
 - Parallel
 - Identical
- n jobs j
 - each characterized by an integer processing time p_j

Aim: minimize the maximum completion time of a job ($makespan$)

Strongly NP-Hard
P||C_{max}

Strongly correlated to the one-dimensional Bin Packing Problem (BPP: determine the minimum number of bins of capacity C used to pack n items of weight c_j)

Given n jobs j of length (weight) P_j, m identical processors and a threshold value L:
Determine if it exists a P||C_{max} solution of value $z=L$

Determine if it exists a BPP solution with capacity of the bins $C=L$ and value $z=m$
Problem $P||C_{max}$ can be formally stated as:

$$\min z$$

$$\sum_{j=1}^{n} p_j x_{ij} \leq z \quad (i = 1, \ldots, m)$$

$$\sum_{i=1}^{m} x_{ij} = 1 \quad (j = 1, \ldots, n)$$

$$x_{ij} \in \{0, 1\} \quad (i = 1, \ldots, m; \quad j = 1, \ldots, n)$$

Where:

- x_{ij} takes value 1 if job j is assigned to proc i, 0 otherwise
- z represents the value of the makespan
P||Cmax Literature

Three fields notation:

Surveys:

P|Cmax Literature

Heuristics:

An exact approach:
An exact Approach

Dell’Amico and Martello

- Improved continuous lower bounds
- Combinatorial lower bounds
 - Partitioning of the items into subsets in order to find the minimum number of machines necessary to process them (BPP)
- Heuristics from literature
- New heuristics
- Branch & Bound approach

Results:

\[m \in (3,15), \ n \in (10,10000), \ P_j \text{ generated randomly in many ways} \]

Majority of instances solved optimally, or usually within 1% gap

Computational times low (generally some seconds)
Problem $P|\#\leq K|C_{\text{max}}$ can be formally stated as:

$$\text{min } z$$

$$\sum_{j=1}^{n} p_j x_{ij} \leq z \quad (i = 1, \ldots, m)$$

$$\sum_{i=1}^{m} x_{ij} = 1 \quad (j = 1, \ldots, n)$$

$$\sum_{j=1}^{n} x_{ij} \leq k \quad (i = 1, \ldots, m)$$

$$x_{ij} \in \{0, 1\} \quad (i = 1, \ldots, m; \quad j = 1, \ldots, n)$$

Where:

- x_{ij} takes value 1 if job j is assigned to proc i, 0 otherwise
- z represents the value of the makespan
Cardinality Constraint

Each processor can handle at max k jobs

$$\Rightarrow n \leq km$$

The special case arising when

$$n = km$$

is defined as K-Partitioning Problem (KPP)

Deeply studied in literature

Strongly NP-hard for a general k

For $K=2$ \implies trivially solvable in $O(n \log n)$
P|#\leq K|C_{\text{max}} \text{ Literature}

Lower bounds:

Survey:
PhD Thesis by M. Bruglieri (Politecnico Milan)

Heuristic and exact approach:
Dell’Amico, I., Martello. “Heuristic algorithms and scatter search for the cardinality constrained P||C_{\text{max}} problem”. Submitted to *Journal of Heuristics*.
Computational results

Dell’Amico, I. and Martello

- Improved continuous lower bounds
- Combinatorial lower bounds
- Heuristics from literature
- New heuristics
- Local search
- Scatter Search approach
- Branch & Bound approach
Computational results

\(n \) in \(\{10 - 400\} \), \(m \) in \(\{3 - 50\} \), \(k \) in \(\{3 - 50\} \)

\(P_j \) randomly created according to different criteria

Around 10000 instances in total
Computational results

K-partitioning and perfect packing instances

m in \{8 – 30\}, k in \{3 – 25\} and \(n = mk\)

\(P_j\) randomly created (around 5000 instances in total)
We are given:

- m parallel processors i, divided into subsets m_1, \ldots, m_r
 - In subset m_i each processor can receive at max K_i jobs
- n jobs j
 - each characterized by an integer processing time p_j
- Aim: minimize the maximum completion time of a job ($makespan$)

Strongly NP-Hard

When n is equal to the sum of K_i: K_i-partitioning problem

Assumption: jobs sorted by non-increasing values of p_j
 processors sorted by non-decreasing values of K_i
\[P|\# \leq K_i|C_{\text{max}} \]

Problem \(P|\# \leq K_i|C_{\text{max}} \) can be formally stated as:

\[
\begin{align*}
\min & \quad z \\
\sum_{j=1}^{n} p_j x_{ij} & \leq z \quad (i = 1, \ldots, m) \\
\sum_{i=1}^{m} x_{ij} & = 1 \quad (j = 1, \ldots, n) \\
\sum_{j=1}^{n} x_{ij} & \leq k_i \quad (i = 1, \ldots, m) \\
x_{ij} & \in \{0, 1\} \quad (i = 1, \ldots, m; \ j = 1, \ldots, n)
\end{align*}
\]

Where:

- \(x_{ij} \) takes value 1 if job \(j \) is assigned to proc \(i \), 0 otherwise
- \(z \) represents the value of the makespan
Literature

Heuristics:

Scatter Search:

A New Algorithm

- Lower bounds
- Reduction procedure
- Heuristics
 - List heuristics
 - Multi Fit (Subset) strategies
 - Mix strategies
- Local search
- Scatter Search
- Branch & Bound
- Further improvement: column generation approach
Simple Lower Bounds

- Any lower bound for $P||C_{max}$ is valid for the new problem
- Any lower bound for $P|\# \leq K|C_{max}$ with $K \geq K_m$ is valid for the new problem
 - Use the exact approach for $P|\# \leq K_m|C_{max}$
 - Eventually improve the lower bound
 - Check the feasibility of the heuristic solution and eventually update the incumbent solution
 - Good performance for “compact” values of K_i
 - Poor performance for “sparse” values of K_i
Lower Bounds

- Improved continuous lower bound

\[L_1 = \left\lfloor \frac{1}{m} \sum_{j=1}^{n} p_j \right\rfloor \]

Continuous lower bound

\[L_2 = \max \left(L_1; p_1 + \sum_{j=n-K_1+2}^{n} p_j \right) \]

Longest job plus \(K_1 - 1 \) smallest jobs

\[L_3 = \max \left(L_2; \sum_{j=n-K_m+1}^{n} p_j \right) \]

Sum of the \(K_m \) smallest jobs

- Similar considerations can be done for other cases
Reduction Procedure

It tries to assign the largest jobs to the processors with lowest K_i

Set $m_r = \{\text{processor 1}\}$, $n_r = \{\text{first } K_1 \text{ jobs}\}$

Repeat

solve reduced problem(n_r, m_r, k_r) and get solution Z_r

if $Z_r \leq L$

//reduce the problem

assign first n_r jobs to m_r processors
continue algorithm with $n - n_r$ and $m - m_r$ processors

else

set $m_r = m_r + \text{next processor } i$
set $n_r = n_r + \text{next } K_i \text{ jobs}$

endif

Until stopping criterion are met
Reduction Procedure

The procedure can be iterated if a success occurs.

The procedure can be called any time the lower bound L is improved.

The reduced problem is solved by branch and bound approach (see later).

Useful for very different values of K_i.
Heuristics: List Strategies

Order jobs in a given order and assign them to processors according to a certain strategy.

- \textit{LPTki}, derived from \textit{LPT} by Graham

 define \textit{car}(i) and \textit{jobs}(i) as the total charge ad number of jobs of processor \(i\) after having assigned a certain number of jobs (order jobs according to non-increasing values of \(p_j\))

 for each job \(j\) in order

 assign job \(j\) to processor with lowest \textit{car}(i) and \textit{jobs}(i)<K_i

It generally gives good results with high \(n/m\) (as shown by probabilistic analysis by Coffman et al.) and cardinality constraint not “tight”.
Heuristics: Multi Fit Strategies

Given a threshold value L, try to assign the jobs to the processors according to tailored strategies so as to not exceed L

(Using Duality properties between $P||C_{max}$ and BPP)

- MS_{Ki}, MS_{2ki} and MS_{3ki}:
 derived from MS by Dell’Amico and Martello
 (order processors according to increasing values of K_i)
 for each processor
 assign subsets of jobs such that:
 - the cardinality is not greater than k_i
 - total processing time as close as possible to (without exceeding) L
 the residual jobs, if any, are then assigned through LPT_{ki}

Assignment is obtained through several tries, best values are kept in memory

Good behavior dependent from lower bound L
Heuristics: Mixed Strategies

Alternate List strategies and Multi fit strategies

- **MIXki**
 - Receives in input a feasible solution
 - Assignes the first n' jobs as in the input solution
 - Sorts processors according to decreasing values of $\text{car}(i)$
 - Assignes to each processor a subset of unassigned jobs, such that the resulting total processing time:
 - closest to, without exceeding, L if such subset exists
 - closest to L otherwise
 - Cardinality constrained respected
 - (Done through complete enumeration)

 Created for Ki-Partitioning instances but appliable to other instances by adding dummy jobs with $P_j=0$
Heuristics: Mixed Strategies

Alternating List and Multi fit strategies

- $MIX2ki$
 - Receives in input a feasible solution
 - Assignes the first k' jobs as in the input solution to each processor (by taking into account cardinality constraint for each K_i)
 - Sorts processors according to decreasing values of $car(i)$
 - Assignes to each processor a subset of unassigned jobs, such that the resulting total processing time:
 - closest to, without exceeding, L if such subset exists
 - closest to L otherwise
 - Cardinality constrained respected
 - (Done through complete enumeration)
Heuristics: Mixed Strategies

Derived from Jimeno, Gutierrez and Mokotoff (2001)

- $F_G H$-Ki

Define a set of limits \{lim\}

- $Lim_0 = 0$
- $Lim_1 = L$
- $Lim_2 = p_m$
- ...
- $Lim_{i+1} = f(\alpha, Lim_i)$

When assigning job j (in order), consider $\min\{car(i)\}$

If $\min\{car(i)\} < lim$ then

use $LPTK_i$ rule

else

use McNaughton rule: assign job to processor i s. t. $car(i) + p_j$

maximum without exceeding L (or exceeding it in the minimum way)
Heuristics: Mixed Strategies

- **FGH**-∞-Ki
 - If $\lim=o$ then Mc Naughton rule
 - If $\lim=L$ then $LPTK_i$ rule
 - It can be called with different values of ∞ and finds a solution for each value of \lim

- **DGH1-Ki, DGH2-Ki**
 - As in the previous algorithm, but with different rules for the definition of subsets $\{\lim\}$
Local Search

- All procedures receive in input a feasible solution, with processors sorted by non-decreasing $car(i)$

- MOVE: for each processor i, let j be the largest job currently assigned to i, execute the following steps:
 a. find the first processor $h>i$, such that $jobs_i(h)<k_i$ and $car(h)+p_j<car(i)$, move job j from i to h
 b. if no such h exists, let j be the next largest job of i, if any, and go to a.

As soon as a move is executed, the procedure is re-started, until no further move is possible
Local Search

EXCHANGE: for each processor i, let j be the largest job currently assigned to i, then execute:

a. find the first processor $h>i$, if any, such that there is a job q, currently assigned to h, satisfying $p_q < p_j$ and $car(h) - p_q + p_j < car(i)$, and interchange j and q

b. if no such h exists, let j be the next largest job of i, if any, and go to a.

As soon as an exchange is executed, the procedure is restarted, until no further exchange is possible

RE-OPT: for each processor i s.t. $(L-1) <= car(i) < Z$, execute:

- Remove from the instance the jobs assigned to i, set $m=m-1$
- Solve the reduced instance through LPT_{k_i}, MOVE and EXCHANGE
- Complete the solution by re-adding the removed processor i
Scatter Search

- Create a starting reference set R of feasible solutions
- Improve them through $MIXki$, $MIX2ki$ and local search algorithms
- Associate with each solution a “quality” index (fitness)
- Create a new reference set R':
 - Insert the best solutions (Elite) of R in R'
 - Choose a subset C of solutions which guarantees a certain level of quality and of diversity
 - Combine the solutions in C through a tailored strategy, in order to create new solutions
 - Improve them through local search
 - Use diversification techniques to escape from local minima (immigration rate)
- Set $R=R'$ and iterate the process until stopping criteria are met
Scatter Search

- **Fitness** $f(l)$
 \[f(l) = \frac{z}{z-L} \]

- **Diversity** $d(l)$: diversity of the solution from the actual elite
 \[d(l) = \sum_{e \in E} |\{j \in \{1, \ldots, n\} : y_{e,j} \neq y_{e,j}\}| \]

- **Combination**
 - Choose a combination subset C (in our case the elite)
 - Define a $m \times n$ matrix M with
 - $M_{ij} =$ sum of $f(q)$ such that j is assigned to i in solution q ($q \in C$)
 - Create new random solution by assigning job j to proc i with probability linked to M_{ij}, respecting the cardinality constraint

Good heuristic solutions for the problem with limited computational times
Enumeration Algorithm

- Depth-first Branch & Bound
- Jobs sorted by decreasing p_j
- During enumeration
 - processors sorted by decreasing (K_i-jobs(i)), breaking ties by decreasing \(\text{car}(i)\)
 - For each job j in order
 - sort processors
 - for each processor i in order
 - compute dominance criteria
 - compute lower bounds
 - assign job j to processor i
Enumeration Algorithm

when assigning the last set N' of jobs:

m

$C'(i), K'(i) = \text{residual capacities of processor } i$

Z_{h-1}
Enumeration Algorithm

- Improved continuous lower bound

 compute the residual area A_{res} as the sum of $C'(i)$

 if a processor i cannot receive any more jobs

 (i.e. $K'(i)=0$ or $C'(i)+p_m>z_h-1$)

 $A_{res}=A_{res}-C'(i)$

 if $A_{res} <$ sum of residual p_j compute backtracking

- K_i lower bounds

 Similar procedure for residual K_i capacity

 Consideration on the minimum number of jobs that must be assigned in future to the current processor
Enumeration Algorithm

- Max flow lower bounds

\[
\max z' = \sum_{i=1}^{m} \sum_{j \in N'} p_j x_{ij} \\
\sum_{j \in N'} p_j x_{ij} \leq C'(i) \quad (i = 1, \ldots, m) \\
\sum_{j \in N'} x_{ij} \leq K'(i) \quad (i = 1, \ldots, m) \\
\sum_{i=1}^{m} x_{ij} \leq 1 \quad (j \in N') \\
x_{ij} \in \{0, 1\} \quad (i = 1, \ldots, m; j \in N')
\]

If \(z' = \text{sum of residual } p_j \), go on in the enumeration, otherwise \((z_h \text{ cannot be improved}) \) compute backtracking

We consider the Linear relaxation of the model
Enumeration Algorithm

- Efficient implementation:

 consider the model restricted to (1), (2), (4) and (5), create the graph:

 ![Graph Diagram]

 Arcs from source to jobs have capacity p_j
 Arcs from jobs to processors have capacity p_j and are drawn only if the processor can accept the job (cardinality and processing time)
 Arcs from processor to terminal have capacity $C'(i)$
 If max flow < sum of residual p_j then compute backtracking
Enumeration Algorithm

- Efficient implementation:
 consider the model restricted to (1), (3), (4) and (5), create the graph:

 Arrows from source to jobs have capacity=1
 Arrows from jobs to processors have capacity=1 and are drawn only if the processor can accept the job (cardinality and processing time)
 Arrows from processor to terminal have capacity = $K'(i)$
 If max flow < sum of residual jobs then compute backtracking
Enumeration Algorithm

- **Surrogate relaxation:**

\[
\begin{align*}
\max z' &= \sum_{i=1}^{m} \sum_{j \in N'} p_j x_{ij} \\
\sum_{j \in N'} \tilde{p}_j x_{ij} &\leq \tilde{C}'(i) \quad (i = 1, \ldots, m) \\
\sum_{i=1}^{m} x_{ij} &\leq 1 \quad (j \in N') \\
x_{ij} &\in \{0, 1\} \quad (i = 1, \ldots, m; j \in N')
\end{align*}
\]

Where

\[
\tilde{p}_j = p_j + T
\]

\[
\tilde{C}'(i) = C'(i) + TK'(i)
\]
Enumeration Algorithm

Problem: finding good values of T:

Surrogate Dual

So far we used “relevant” values of T

Subgradient Optimization

Nice ideas?
Preliminary computational Results

We coded the algorithm on C and tested it on different instances

\(n \) in \(\{10 - 500\} \) \(m \) in \(\{3 - 50\} \)

<table>
<thead>
<tr>
<th>Class</th>
<th>Ranges</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P_j) in ([10,1000]) {*}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(P_j) in ([200,1000])</td>
<td>Uniform</td>
</tr>
<tr>
<td>3</td>
<td>(P_j) in ([500,1000])</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\mu = 25)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\mu = 50)</td>
<td>Exponential</td>
</tr>
<tr>
<td>6</td>
<td>(\mu = 100)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\mu = 100, \sigma = 33)</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>(\mu = 100, \sigma = 66)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(\mu = 100, \sigma = 100)</td>
<td></td>
</tr>
</tbody>
</table>
Preliminary computational Results

K_i created according to 10 different subclasses

Define $r = n/m$ (rounded up if not integer)

K_i are distributed uniformly in the following ranges

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Ranges</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[r-1; r]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>[r-1; r+1]</td>
<td>K_i-partitioning</td>
</tr>
<tr>
<td>3</td>
<td>[r-2; r+2]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[r; r+1]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>[r; r+2]</td>
<td>$P</td>
</tr>
<tr>
<td>6</td>
<td>[r; r+3]</td>
<td></td>
</tr>
</tbody>
</table>
Preliminary computational Results

Define a segment of total length \(L = \alpha n \)
Cut the segment into \(m \) pieces, whose length(>1) produces \(K_i \)

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Ranges</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(\alpha = 1)</td>
<td>(K_i)-partitioning</td>
</tr>
<tr>
<td>8</td>
<td>(\alpha = 1.25)</td>
<td>(P</td>
</tr>
<tr>
<td>9</td>
<td>(\alpha = 1.5)</td>
<td>(P</td>
</tr>
<tr>
<td>10</td>
<td>(\alpha = 2)</td>
<td>(P</td>
</tr>
</tbody>
</table>
Preliminary computational Results

For each \((m,n)\) and for each subclass of \(K_i\) 10 instances were randomly created.

<table>
<thead>
<tr>
<th></th>
<th>(m=3)</th>
<th></th>
<th>(m=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td>(N^\circ) opt</td>
<td>% gap</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0,00</td>
<td>0,06</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>0,00</td>
<td>0,74</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>0,00</td>
<td>2,36</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>0,00</td>
<td>2,24</td>
</tr>
</tbody>
</table>

Times in seconds on a Pentium IV 1700 MHz
Preliminary computational Results

<table>
<thead>
<tr>
<th>m=5</th>
<th>m=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>N° opt</td>
</tr>
<tr>
<td>10</td>
<td>/</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>
Preliminary computational Results

<table>
<thead>
<tr>
<th>n</th>
<th>N° opt</th>
<th>% gap</th>
<th>Time</th>
<th>m=20</th>
<th>N° opt</th>
<th>% gap</th>
<th>Time</th>
<th>m=40</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>25</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>25</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>50</td>
<td>69</td>
<td>0,26</td>
<td>1,40</td>
<td>50</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>0,72</td>
<td>2,01</td>
<td>100</td>
<td>65</td>
<td>0,26</td>
<td>29,93</td>
<td>/</td>
</tr>
<tr>
<td>200</td>
<td>85</td>
<td>0,82</td>
<td>2,21</td>
<td>200</td>
<td>67</td>
<td>1,11</td>
<td>20,85</td>
<td>/</td>
</tr>
<tr>
<td>400</td>
<td>99</td>
<td>0,06</td>
<td>2,36</td>
<td>400</td>
<td>79</td>
<td>0,79</td>
<td>11,21</td>
<td>/</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>0,00</td>
<td>1,46</td>
<td>500</td>
<td>100</td>
<td>0,00</td>
<td>5,45</td>
<td>/</td>
</tr>
</tbody>
</table>
Preliminary computational Results

<table>
<thead>
<tr>
<th>m=50</th>
<th>n</th>
<th>N° opt</th>
<th>% gap</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>25</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>50</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>100</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>200</td>
<td>78</td>
<td>0,49</td>
<td>10,34</td>
<td>/</td>
</tr>
<tr>
<td>400</td>
<td>88</td>
<td>0,28</td>
<td>16,93</td>
<td>/</td>
</tr>
<tr>
<td>500</td>
<td>99</td>
<td>0,03</td>
<td>6,56</td>
<td>/</td>
</tr>
</tbody>
</table>
Further Improvements

- Column Generation Approach
 Let L be the best lower bound and U the incumbent solution

 We try a binary search for values V between L and U

 We formulate the problem as a 1-dimensional Bin Packing Problem, with capacity of the bins equal to V and cardinality constraints imposed on each bin

 If for a value V we found a solution $= m$, we update $U=V$
 If we prove that no solution exists we set $L=V$
Further Improvements

- Column Generation Approach

We consider a Set Covering formulation of the problem. Let S be the set of all possible fillings of a bin, our aim is to minimize the number of fillings used. For small instances we can consider all the possible fillings. For bigger instances we start with a limited set of fillings, compute the solution and find out if in the dual some constraints are violated. This is done through “slave” problem Knapsack-01, solved by:
 - Dynamic Programming
 - MIPOPT
 - Branch & Bound by Martello and Toth