
The single-finger keyboard layout problem

Mauro Dell’Amico†1, José Carlos Dı́az Dı́az†, Manuel Iori† and Roberto

Montanari†

† DISMI, University of Modena and Reggio Emilia,

42100 Reggio Emilia, Italy

Revised version November 2008

Abstract

The problem of designing new keyboards layouts able to improve the typ-

ing speed of an average message has been widely considered in the literature of

the Ergonomics domain. Empirical tests with users and simple optimization

criteria have been used to propose new solutions. On the contrary, very few

papers in Operations Research have addressed this optimization problem. In

this paper we firstly resume the most relevant problems in keyboard design,

enlightening the related Ergonomics aspects. Then we concentrate on key-

boards that must be used with a single finger or stylus, like that of Portable

Data Assistant, Smartphones and other small devices. We show that the un-

derlying optimization problem is a generalization of the well known Quadratic

Assignment Problem (QAP). We recall some of the most effective metaheuris-

tic algorithms for QAP and we propose some non trivial extensions to the

keyboard design problem. We compare the new algorithms through compu-

tational experiments with instances obtained from word lists of the English,

French, Italian and Spanish languages. We provide on the web benchmark

instances for each language and the best solutions we obtained.

Keywords: Keyboard design, Quadratic Assignment Problem, Metaheuristic

1 Introduction

The keyboard represents one of the most popular and effective devices to insert,

edit, delete and update long chunk of information. Keyboards used with more than

one finger (n-fingers later) were firstly introduced more than 100 years ago to sup-

port the typists’ task. The first keyboard, called Q-W-E-R-T-Y, derived its name

from the keys layout. QWERTY layout is nowadays still used to insert users’ data

into personal computers. The most recent proliferation of Portable Data Assistant

1Corresponding author, email: mauro.dellamico@unimore.it, DISMI via Amendola, 2, 42100

Reggio Emilia, fax +39-0522 52 22 30

1



(PDA), Smartphone and phones have required a strong improvement in the design

of ad-hoc input devices, able as the keyboard to allow the input and management

of text, e.g., writing of e-mails or messages, allocation of dates in a Personal Infor-

mation Manager (PIM). Typically, these keyboards could be used either with many

fingers or a single finger (s-finger, hereinafter). While the n-fingers keyboard has

not significantly changed the keys layout, and the major standards have survived

despite many alternatives have been proposed, the keyboards for portable systems

(both n- and s-finger) are a still open design domain. Many alternatives are avail-

able and none of them have definitely dominated the others, in terms of users’

acceptance, usage effectiveness, large adoption by the devices developers. More-

over, these portable keyboards are typically used in multitasking conditions (e.g.,

while walking or driving). Namely, the task of searching and scanning a letter while

composing a word could become a problem if it takes too much time. Therefore, to

keep this task as short as possible represents a relevant design objective. Proposals

for a keyboard layout that is expected to optimize criteria as typing speed, quick

learning curve, typing error reduction have been often proposed (see, e.g., Norman

and Fisher [34]). The major part of them is based on standard n-fingers keyboard,

whereas only rarely the research pointed in the direction of s-finger keyboard, de-

spite the strong interest that this domain could have both in theoretical and applied

point of views. This paper find its motivation in the proposals of new s-finger key-

board layouts, through the solution of the underlying optimization problems.

In Section 2 we resume the main problems in keyboard design (both n- and

s-finger), giving some hits of the corresponding Ergonomics aspects and discussing

the related literature in Operations Research. Section 3 gives a formal description

of the s-finger problem we address and shows that it generalizes the Quadratic

Assignment Problem. New neighborhoods and properties to speed-up local search

algorithms for the keyboard design problem are presented in Section 4. A brief

survey of some of the most effective metaheuristic algorithms developed for QAP

is presented in Section 5. The next Section 6 presents non-trivial adaptations of

these metaheuristic to the keyboard design problem. In Section 7 we introduce the

benchmark instances we have obtained starting from real-life word lists of English,

French, Italian and Spanish languages. The algorithms performances are evaluated

in Section 8. The final Section 9 resumes our work.

2



2 Study motivation from an Ergonomic point of

view

As mentioned above, keyboards can be seen as a challenging design problem, either

they are n- or s-finger. For the n-fingers case most of the works have been focused

on the tentative to overtake the QWERTY standard. For the s-finger the major

task has been trying to improve the typing accurateness, as well as the time spent

to edit a text. Typical measures to evaluate n-fingers keyboards are posture struc-

ture, discomfort produced, keying force, user acceptance (see, e.g., Sanders and

McCormick [37]). For s-finger, measures are referred to the time spent completing

a given task, to the errors produced by the users, and to performances modification

due to the multitasking conditions. In the rest of this Section, a review of major

layouts and literature findings for what concerns both the n- and s-finger cases are

reported.

2.1 The n-fingers keyboards: Types and literature

The design parameters for the original typewriter keyboard, namely QWERTY,

are obsolete as stated in Hargreaves et al. [23]. The main design problems of this

keyboard are the poor shape and the poor key allocation. Because the standard

QWERTY was designed for two-fingers typists, it does not efficiently allocate keys to

fingers as some fingers are request to perform much work than others. For instance,

as demonstrated by Swanson et al. [40], the left hand and fingers (typically weaker

than the right ones) are aimed at handling the most frequently used letters.

One of the most basic alternative keyboards is a split QWERTY keyboard, di-

vided into two halves. This allows reduce forearm pronation, to keep low ulnar

deviation, to reduce wrist extension. Even from the physical point of view benefits

are evident as they revealed a short-term reduction in productivity. Other perfor-

mance studies for mini-QWERTY keyboards (i.e., small versions of the QWERTY

keyboard in use in many mobile devices) were proposed by Norman and Fisher [34].

The Dvorak keyboard (see Figure 1) is a U.S.A. keyboard layout patented in 1936

by the educational psychologist August Dvorak. It has been designed on the basis

of how frequent is the use of different letters, including the frequency of two, three,

four and five sequences of symbols. Although Dvorak layout is more effective than

the QWERTY one, it was unfortunately never accepted by the general population.

Other proposals came from Claude Marsan, based on the French language, in 1976,

1979 and 1987. Also these keyboards have not been accepted by the users.

Several works in Ergonomics have tried to assess the behavior of the above

3



mentioned keyboards (see, e.g., Card, Moran and Newell [9]). Recently Operations

Research and Ergonomics started working together to design “optimal” keyboards

by means of quantitative methods. Egger et al. [15] considered the problem of

assigning characters to keys arranged in a pre-specified layout structure. They

designed a weighting method based on six-performance indicators: (i) a distribution

of the fingers load among all fingers; (ii) the hits number needed to compose a text;

(iii) comfort and speed guaranteed when consecutive keys are not hit by the same

hand and (iv) fingers; (v) avoidance of great steps among two different keys; and

(vi) hits direction that should move from the little finger towards the thumb. At

the end, a global score is computed by a weighted linear combination of the six

scores. An Ant Colony Optimization algorithm was used to propose a solution for

the English and German languages.

In this paper we propose a new study based on the integration of Operations

Research techniques and Ergonomics concepts, focused on the optimization of the

s-finger keyboards.

2.2 The s-finger keyboards: An open design domain

Both Ergonomics and Operations Research related topics have been applied to study

small keyboards and s-finger keyboards. To apply quantitative methods the effort

in typing an average phrase with a single finger (or a stylus) has to be defined. The

major influencing factors in the movement evaluation are the distance among the

keys and the space to be carried out by the single finger. The law introduced by

Fitt [16] models the time and difficulties required to move to a target area as a

logarithmic function of the ratio between the distance to be covered and the size of

the target area. Fitts’ law has been used widely as a major rationale to guide design

solutions, both for physical and virtual pointing (i.e., with mouse and fingers) and

it has been adopted in a huge series of experiments (see, e.g., MacKenzie [31]). In

most of them, a correlation coefficient of 0.95 or higher has been found, highlighting

that this is a very accurate model, sufficient to guarantee an implicit assess of the

layout solutions identified.

Another choice in designing s-finger keyboards concerns complete or incomplete

keyboards. A complete keyboard uses as much keys as characters in the alphabet of

the language considered, whereas incomplete keyboards have fewer keys, hence more

than one character may be associated with the same key. This paper presents op-

timization methods for the complete case, but, for sake of completeness, we shortly

resume the main results for both choices.

4



2.2.1 Incomplete keyboards

A very common example of incomplete keyboard is the 12 keys ISO keyboard [25]

used in most of the mobile phones, see Figure 2-(a). The design of an optimal

layout of an incomplete keyboard is a combinatorial problem (called Keyboard

by Cardinal and Langerman [10]), which asks for a minimum size partition of an

alphabet, allowing the users to type any word of a given dictionary so that each word

is recognized without ambiguity. In [10] the authors considered the complexity of

such a problem, and showed that it is NP-hard even if we only wish to decide whether

two keys are sufficient. In [10] several variants of the problem are considered, by: (a)

taking into account the possibility that a word is recognized with a small ambiguity

(i.e., a given sequence of keys corresponds to more than one word); (b) fixing the

number of keys, and (c) imposing that the characters assigned to the same key are

contiguous in the alphabet (contiguous keyboard problem). Conditions (a)-(c)

hold in the cited 12 keys ISO keyboard. Figure 2-(b), taken from [10], reports

solutions with minimum ambiguity for the continuous keyboard problem with fixed

number of keys, and a dictionary of 885 words. These optimal solutions look quite

different than the ISO keyboard. Sörensen [39] extended the 8 key keyboard

problem, by using: (i) a word list instead of a dictionary (i.e., a set of words ordered

by the frequency in which they appear in the language), and (ii) a multi-objective

function which considers both the degree of ambiguity and a measure of the effort

required to type an average message in the language. A multi-start local search

algorithm based on the movement of a single character from a key to another is

developed and used to find the Pareto frontier.

2.2.2 Complete keyboards

The FITALY keyboard is an USA s-finger keyboard patented by Textware Solutions

(see Figure 3). It has been designed for English on the basis of the corresponding

words frequency. Others examples of complete keyboards are the ABC layout,

OPTI, Metropolis, Hooke, Lewis, and many more presented in the complete review

proposed by MacKenzie and Soukoreff [30].

Li, Chen and Goonetilleke [28] consider three layout structures where the po-

sition and size of the keys are fixed and the problem is to assign one character of

the English language to each key so that the movement time is minimized. The

movement is evaluated through the Fitts’ law. A simple simulated annealing meta-

heuristic was used to define heuristic layouts. The authors compared their solutions

with other standard layouts, by means of 20 instances taken from BBC and Times.

They concluded that the performances of their solutions change a lot with the in-

5



stance. A FITALY structure with character rearranged in the so called “YLAROF”

shape is the most robust solution.

In this paper we use the same objective function of [28], but our problem is more

general since we do not adopt an a-priori layout structure. Therefore, we have to

choose both the location of the keys and the assigned characters.

3 Problem Description

In this paper we consider the s-finger keyboard layout problem, defined by the

following assumptions:

(a) all keys are identical and they are arranged in a grid (or square lattice) of unit

squares, named locations. In the following we will indifferently use the word

‘key’ or ‘location’ to indicate a unit square;

(b) the symbols (or characters) placed in the locations are all different;

(c) each key contains exactly one symbol;

(d) each symbol is assigned to exactly one key.

Assumption (a) imposes that no keys of large size (e.g., the space bar in a QWERTY

keyboard) will be used. Assumptions (b)-(d) imply that the keyboard cannot con-

tain duplicate symbols. The problem is to assign the symbols to the locations while

minimizing the average time required to write a statement in a given language.

In the following we show that this problem is a generalization of the well known

Quadratic Assignment Problem (QAP). We identify hereinafter our problem with

the acronym SK-QAP.

We can compute the average time to write a statement in a given language,

by considering, for each ordered pair of symbols, the frequency in which this pair

appears in the chosen language. To obtain the solution value, we multiply this

frequency by the time needed to move the single finger between the locations ac-

commodating the two symbols, and we sum up these values over all the ordered

pairs of symbols. As seen in Section 2.2, the rationale behind this choice is modeled

around the Fitts’ law [16], which states that the effort of typing two symbols i and

k, consecutively, is

α + β log2

(

D

A
+ 1

)

. (1)

The parameters α and β have prefixed constant values, D is the distance of the

keys which symbols i and k are assigned to and A is the size of the key which k is

assigned to.

6



Note that the contribution to the overall writing time due to a repetition of the

same symbol is independent of the assignment of the symbol to a location, hence

it can be omitted from the objective function. Moreover the assumption that the

keys have equal size implies that the time required to move the finger between two

locations only depends on the distance of the two keys, still in accordance with the

Fitt’s law (the introduction of the size factor, that is significantly expected to affect

the measure of the effort, will be considered in further investigations). It follows

that in our problem the objective function only depends on the distance between

the centers of two locations. For our computations we used the values of the two

constants in (1) that have been experimentally determined by MacKenzie, Sellen

and Buxton [29], namely α = 0 and β = 10/49.

We can formally describe SK-QAP as follows. We are given an alphabet con-

sisting of a set N = {1, 2, . . . , n} of symbols (or characters) and a set M =

{1, 2, . . . , m2} of locations, organized in an m×m grid, with m sufficiently large to

accommodate all the symbols. We describe a solution through an injective function

ϕ : N → M , which maps the symbols 1, 2, . . . , n to the locations ϕ(1), ϕ(2), . . . , ϕ(n).

A solution ϕ is an assignment of the symbols to the locations and is called, for short,

an assignment. The set of all possible solutions is denoted by S. We use matrices

A and B to denote frequencies and distances:

A = (aik), where aik is the frequency of the ordered symbol pair (i, k);

B = (bjl), where bjl is the value of the Fitts function (1), computed with

respect to the Euclidean distance from the center of location j to the center

of location l.

The problem can be stated as

z = min
ϕ∈S

n
∑

i=1

n
∑

k=1

aikbϕ(i)ϕ(k). (2)

Since matrix B is symmetric we can rewrite (2) as

z = min
ϕ∈S

n
∑

i=1

n
∑

k=i+1

(aik + aki)bϕ(i)ϕ(k) =
1

2
min
ϕ∈S

n
∑

i=1

n
∑

k=1

aikbϕ(i)ϕ(k), (3)

where A = (aik) is a symmetric matrix with aik = aik + aki. In the following we

adopt formulation (3) to simplify the formulas used to evaluate the solutions gen-

erated by our algorithms. The value of a solution ϕ will be denoted by z(ϕ).

7



3.1 SK-QAP vs QAP

We have already noted that SK-QAP is a generalization of the Quadratic Assign-

ment Problem (QAP), one of the most classical and difficult combinatorial opti-

mization problems. QAP is usually described as the problem of assigning a set of n

facilities to n locations, with the cost being proportional to the flows between the

facilities multiplied by the distances between the locations. If we assume that aik is

the flow between facility i and facility k, and bjl is the distance between location j

and l, QAP is the special case of SK-QAP where ϕ is a mapping from {1, 2, . . . , n}

to itself. In other words ϕ is a permutation of the first n integers. For a complete

description of QAP and the relevant solution methods, the reader is addressed to

the recent monograph by Burkard, Dell’Amico and Martello [6].

QAP was used by Pollatschek, Gershoni and Radday [36] and Burkard and

Offermann [7] to model a keyboard design in a typewriter in which the layout of

the keyboard is given, and the goal is to assign the n symbols to the n existing

keys. In both studies results have been relevant. In [7], for instance, the heuristic

proposed achieved an improvement of 7-10% compared with the standard typewriter

keyboard. More recently Egger at al. [15] addressed the same problem, but using

an objective function that sums up six Ergonomics indicators (see Section 2.1). Due

to the nature of the objective function the resulting problem cannot be modeled as

a QAP. The solution approach used in [15] is an Ant Colony Optimization method

(see Section 5) and the optimized keyboards achieve a great improvement for all

indicators, with respect to standard layouts.

The problem here proposed is more general than the above ones, since there are

more locations than symbols and the layout is not known a priori. Note that this

is a very relevant difference. Indeed, assuming that ten fingers are used, the time

required to type two keys is not monotonously increasing with the distance of the

two locations. As a matter of fact it is necessary a very small time to type two keys

placed on the opposite sides of the keyboard (e.g., symbols Q and P in a QWERTY

keyboard) since two different hands are working. In the case of fixed layout, it is

known from typewriting theory how to associate fingers to keys, so one can easily

determine the time requested to type two keys consecutively. If instead, the layout

is not fixed, one cannot determine the typing time for ten-fingers without strong

assumptions on the association of fingers to keys. In the s-finger case, instead, the

time is easily determined by (1).

QAP is known to be strongly NP-hard, hence SK-QAP is strongly NP-hard

too. As mentioned above QAP is a challenging optimization problem. Benchmark

instances nug27, nug28 and nug30 (with size 27, 28 and 30, respectively), proposed

8



in the late Sixties by Nugent, Vollmann and Ruml [35], have been solved exactly

only recently. The fastest algorithm published so far is the branch-and-bound code

by Adams, Guignard, Hahn and Hightower [3] which solves the three instances in 20

CPU days, 5 CPU months, and 2.5 CPU years, respectively, on an HP9000 C3000

workstation.

QAP has been attacked with several constructive heuristics and tens of pure

and hybrid local search methods. A survey of several metaheuristic approaches

for solving QAP has been presented by Drezner, Hahn and Taillard [14]. Recently

James, Rego and Glover [26] proposed a comparison of almost all the most recent

metaheuristic algorithms for QAP, using a large number of benchmark instances

and parallel implementations.

In the next sections we propose some adaptations of basic metaheuristic algo-

rithms to SK-QAP, and we test their effectiveness on a set of benchmark instances.

4 Neighborhoods and Speed-ups

In this section we describe the neighborhoods that we have adopted or developed

for this problem, and a set of speed-up techniques used to reduce the search space

and to avoid useless computations.

4.1 Neighborhoods

In a local search algorithm we use a neighborhood function N , which associates with

any solution ϕ a portion N (ϕ) of the solution space containing all solutions that

can be obtained from ϕ with a ‘simple’ transformation. We call move the process

that transforms ϕ into a neighboring solution ϕ′. One of the simplest neighborhood

for SK-QAP involves the movement of a single symbol to a new (empty) location.

Let us define contour the set of empty locations having at least one symbol in one

of their adjacent locations. Figure 4 provides a solution of a nine symbols layout,

where the shaded squares enlighten the contour locations. Note that a contour lo-

cation can be either in the exterior or in the interior of the layout of a solution.

Given a SK-QAP solution, we define border location each of the external locations

containing a symbol. In Figure 4 the locations containing symbols A, B and C

define the top border, the location containing symbol F the right border, the loca-

tion containing symbol I the bottom border and the locations containing symbols

A and D the left border. We are now ready to describe the neighborhoods and the

speed-ups we implemented.

9



Neighborhood N1 (contour filling) : Set of solutions obtained by moving each

symbol to an empty contour location.

Note that this neighborhood make no sense for QAP, since it has no empty

location. One can see that the contour locations are O(n), so the neighborhood

size is O(n2). To evaluate the entire neighborhood we use a technique adapted

from those proposed by Heider [24] and Burkard and Rendl [8] for QAP. Let ϕ be

the current solution and ϕ′ the solution obtained from ϕ by moving symbol i to

location j. The value z(ϕ′) can be evaluated in O(n) by computing the difference

z(ϕ′) − z(ϕ), which is affected only by the moved symbol:

∆(ϕ, i, j) = z(ϕ′) − z(ϕ) =

n
∑

k=1

k 6=i

aki(bϕ(k)j − bϕ(k)ϕ(i)). (4)

The exploration from scratch of the entire neighborhood requires O(n3) time. For

QAP Frieze, Yadegar, El-Horbaty and Parkinson [17] proposed an improvement

that stores the values ∆ to evaluate the next neighbor in O(n2). For SK-QAP a

similar improvement can be obtained. Let ϕ′′ be the solution obtained from ϕ′ by

moving a symbol h to an empty location l(6= j) which is being a contour location

of both ϕ and ϕ′. In this case z(ϕ′′) can be evaluated in O(1) using

∆(ϕ′, h, l) = z(ϕ′′) − z(ϕ′) = ∆(ϕ, h, l) + aih(bjl − bϕ(i)l + bϕ(i)ϕ(h) − bϕ(h)j). (5)

If, instead, location l is a new contour location that appears when i is moved (i.e., l

is adjacent to j, or equivalently, l is in the contour of i in solution ϕ′), then (4) must

be used. But the number of possible new contour locations is a constant, so the

time required to compute the solution value for all possible movements of symbol h

to a new location is O(n) and the computation of the entire neighborhood can be

done in O(n2).

Neighborhood N2 (pairwise-exchange): Set of solutions obtained by swapping

the assignment of two symbols r and s.

The neighborhood size is again O(n2) and can evaluated from scratch in O(n3)

since the difference between the new solution ϕ′ and the starting solution ϕ is:

∆(ϕ, r, s) = z(ϕ′) − z(ϕ) =

n
∑

k=1

k 6=r,s

(akr − aks)(bϕ(s)ϕ(k) − bϕ(r)ϕ(k)). (6)

10



Neighborhood Nk (k-exchange): Set of solutions obtained by permuting in all

possible ways the assignments of k symbols.

This is generalization of the pairwise-exchange neighborhood which is obtained

by setting k = 2. The size of the neighborhood is O(nk).

4.2 Speed-ups

The techniques used to speed up the search refer to avoid visiting equivalent solu-

tions, and to avoid visiting some previously generated solutions.

4.2.1 Equivalent solutions

An important difference between QAP and SK-QAP, that has large impact on the

solution algorithms, is the following. Two different QAP solutions are determined

by two different permutations. They can have the same solution value, but the two

solution structures are different. For SK-QAP, instead, two different assignments

of the n symbols may result into the same layout. Consider, e.g., the six symbol

assignments depicted in Figure 5. Solution (a), called “original”, is transformed

into equivalent assignments (b), (c) and (d), by applying in sequence a translation,

a vertical reflectional symmetry and a 90◦ counter-clockwise rotation. (A vertical

reflectional symmetry produces the mirroring image along a vertical axis.) The last

solution (d) is called “canonical form”, and will be discussed later in this section.

Property 1 Consider the largest subset of the solutions space that does not contain

two solutions to be obtained one from the other through a translation, a rotation, or

a symmetry operation. This subset contains an optimal solution of SK-QAP.

Another simple, but useful property concerns very “sparse”solutions.

Property 2 A solution of SK-QAP is not optimal if there is an empty line (row

or column) of the square lattice with symbols assigned on both sides of the line.

In our algorithm we implement the restrictions of Properties 1 and 2 as follows. A

solution is first shrinked applying Property 2 to remove empty rows and columns,

then it is transformed by the operators of Property 1 into an equivalent solution in

which:

(i) there is at least one symbol in the upper row and one symbol in the leftmost

column of the square lattice;

11



(ii) the smallest symbol in alphabetical order on a border location is on the upper-

leftmost position.

We call this solution a canonical form. In the example of Figure 5 we first apply

a translation to satisfy condition (i) above, thus obtaining solution (b) of Figure

5. We next apply a vertical reflectional symmetry and a 90◦ counter-clockwise

rotation to obtain the assignment (d). After the transformations there are symbols

in the upper row (A and B) and in the leftmost column (D), and the smallest

symbol assigned to a border location (A) is in a top border location, in the leftmost

position. In order to save time, the transformation into canonical form is applied

only to a solution which is candidate as starting point of our local search procedure

described in Section 6.

4.2.2 Hashing

To speed up the search we introduce a long term memory (see below the discus-

sion on the tabu search algorithms) that uses a sort of hashing technique to store

solutions already visited and optimized. A candidate solution in canonical form is

coded into a single long integer as follows. We consider the four borders of the

solution (top, right, bottom and left) and we select one symbol for each side: (i)

the rightmost symbol of the top border; (ii) the lowest symbol of the right border;

(iii) the leftmost symbol of the bottom border and (iv) the highest symbol of the

left border. In the example of Figure 5-(d) the selected symbols are B, G, F and

D. For each symbol i, among the four selected one, we sum up the frequency aik

between the symbol and each adjacent symbol k. The resulting value is used as a

representative of the current solution and it is stored in a four-dimensional matrix

in which each dimension is associated with a border and has one value for each

symbol. A solution in canonical form having an hashing value already stored in an

entry of the matrix is no longer considered for continuing the search.

5 Metaheuristic Algorithms for QAP

In this section we firstly resume some metaheuristic approaches which have been

applied with success to QAP. Then we describe the implementations we have de-

veloped for SK-QAP.

Simulated Annealing (SA) is one of the first metaheuristic approaches, going

back to the seminal papers by Kirkpatrick, Gelatt and Vecchi [27] and Černý [11].

12



The algorithm gets inspiration from a method used by physicians to obtain a state

of minimum energy of a multi-particle physical system. SA starts with a high

temperature value T , and performs a search in the solution space by randomly

selecting neighboring solutions ϕ′ of the current solution ϕ, and accepting them

accordingly to the probability function

P (ϕ′ accepted) =

{

1 if z(ϕ′) < z(ϕ),

e−(z(ϕ′)−z(ϕ))/(kBT ) if z(ϕ′) ≥ z(ϕ),
(7)

where kB is the Boltzmann constant.

After a number of iterations, depending on the so called cooling scheme, the

temperature is reduced, thus inducing a decrease in the probability of accepting a

worsening solution. For a detailed discussion on SA the reader is referred to the

books by Aarts and Korst [1] and Aarts and Lenstra[2]. Burkard and Rendl [8]

applied for the first time SA to the QAP using the pairwise exchange neighborhood

N2 and a cooling scheme that halves the temperature every 2n iterations. Other

approaches are due, e.g., to Wilhelm and Ward [44] and Connolly [13].

The Tabu Search (TS) method introduced by Glover [19, 20] is based on a simple

yet effective concept to avoid being trapped in a local minimum: When no solution

of the current neighborhood is improving, then select a worsening solution that was

not visited in the past. It is impractical to store all the visited solutions and to

check if each neighboring solution is identical to a previous one. Therefore Glover

proposed to store in a tabu list only some attribute of each solution, or the move

performed to transform the current solution into the neighboring one. The solutions

that have the same attributes of a solution in the tabu list, or that can be generated

with a move stored in the tabu list, are not considered for continuing the search.

For a comprehensive introduction to tabu search algorithms we refer the reader to

Glover, Taillard, and de Werra [22] and to Glover and Laguna [21].

Several other ingredients have been proposed to design effective TS algorithms.

Among others some important ones are: (a) the strategy to update the tabu list

length; (b) an aspiration criterion, i.e., a condition that in some cases cancels

a tabu status; (c) a long-term memory, generally based on the frequency of the

application of particular moves, which is used for a better guiding of the search. A

TS algorithm for QAP, based on the pairwise exchange neighborhood, was presented

by Skorin-Kapov [38]. Taillard [43] proposed the robust tabu search, that is another

TS implementation based on the pairwise exchange neighborhood, but makes use

of the efficient neighborhood evaluation method proposed by Frieze, Yadegar, El-

Horbaty and Parkinson [17]. The tabu list consists of a matrix TL where the

13



facilities are associated with the rows and the locations with the columns. When

an exchange assigns facility i to location j and facility i′ to location j′ such that

ϕ(i) = j′ and ϕ(i′) = j, then the algorithm stores in TLij the number of the

iteration in which the swap was performed. At the following iterations a swap is

declared tabu if both facilities are assigned to locations they had occupied in the

last tabu tenure iterations. The tabu tenure is randomly chosen between prefixed

minimum and maximum values, and is frequently updated.

Battiti and Tecchiolli [4] introduced the Reactive Tabu Search (RTS), which

involves a sophisticated mechanism for adapting the tabu tenure and an original

diversification scheme. The neighborhood and the tabu status are the same as in

Skorin-Kapov [38] and Taillard [43]. The algorithm reacts during the evolution

of the search by increasing the tabu tenure when a solution is repeated along the

search, and decreasing it if no repetition occurs for a certain number of iterations.

Hashing functions, binary trees and bucket lists are used to store the solutions and

to check if a neighbor solution was already visited. If a solution is repeated more

than once, the algorithm performs a diversification phase based on a random walk,

i.e., on the execution of a number of random swaps which are also stored in the tabu

list to avoid an immediate return to the region of the walk’s starting solution. The

numerical results show that RTS is competitive with robust tabu search in terms of

number of iterations performed to reach the best solution. In [5] the same authors

compared their RTS with an implementation of the simulated annealing by Burkard

and Rendl [8]. They showed that if short computing times are allowed, then SA

beats RTS, but the latter needs less CPU time than SA to reach average results

which are as close as 1% to the best known solutions.

The Variable Neighborhood Search (VNS ) introduced by Mladenović and Hansen

[33] is a strategy that involves the use of complex neighborhoods. The basic idea

is to use several neighborhood structures and to explore them in a systematic way,

by increasing complexity.

Concerning QAP, an application of VNS was proposed by Taillard and Gam-

bardella [42]. The neighborhoods used are the k-exchange neighborhoods with k

smaller than or equal to a parameter kmax. The exploration strategy consists of a

number, say nI , of iterations using one neighborhood at a time in a cyclic manner,

as follows:

1. randomly generate a solution ϕ∗ and set k := 1;

2. for i := 1 to nI do

3. randomly select ϕ′ ∈ Nk(ϕ∗);

14



4. apply a fast improving procedure to ϕ′;

5. if (z(ϕ′) < z(ϕ∗)) then set ϕ∗ := ϕ′, k := 1;

6. else set k := k mod kmax + 1

7. endfor

The Ant Colony Optimization (ACO) is a metaheuristic approach which takes

inspiration from the behavior of an ant colony in search for food. In the seminal

paper by Colorni, Dorigo and Maniezzo [12], an ant is a simple computation agent,

that iteratively constructs a solution basing its decisions on the partial solution it

has constructed so far, and some information on the solutions constructed by other

ants. Concerning QAP, the attractiveness of assigning a facility i to a location

j depends on the so called pheromone trail, a value stored in a global array (τij)

accessible to all ants and computed using the objective function value of the previous

solutions using the i → j assignment.

The hybrid ACO method is an ACO algorithm that optimizes each solution

through a local search method. Maniezzo and Colorni [32] proposed a hybrid

ACO algorithm based on the 2-exchange neighborhood. Gambardella, Taillard

and Dorigo [18] proposed a hybrid method which works with complete solutions

instead of partial ones. Taillard [41] introduced the so called Fast ANT (FANT )

method which is inspired by the hybrid ACO method above, but differs from it in

two main respects : (i) it does not use a population, but constructs one solution at

a time; (ii) when a new solution ϕ is generated, it reinforces each value τiϕ(i), but

at the same time it uses a parameter R to give a strong reinforcement to the values

τiϕ∗(i), where ϕ∗ is the best solution so far. This memory updating provides a fast

convergence toward the best solutions, but it also restricts the search to a small

area of the search space. The algorithm is completed by a diversification method

which resets matrix (τij) if the current solution is identical to the best solution

found so far. Computational experiments show that ACO methods are competitive

heuristics for real life QAP instances where there are few good solutions, clustered

together. For instances which have many good solutions distributed “uniformly” in

the search space, they are outperformed by the other heuristics.

6 Metaheuristic algorithms for SK-QAP

In this section we present in detail the modifications that we have done to some of

the metaheuristic algorithms for QAP, in order to solve SK-QAP.

Local Search

15



We start by describing a simple Local Search algorithm, called LS Refine, that

we use to drive to a local optimum a solution obtained by a more sophisticated

metaheuristic algorithm. LS Refine starts by finding a local optimum using neigh-

borhood N1, then tries to further improve the solution by looking for a local op-

timum with respect to N2. If the search with N2 improves the solution, then the

procedure is reapplied from the beginning, otherwise LS Refine returns the current

solution. The exploration of the neighborhoods is performed with two techniques.

The first one is a best-improvement method which explores the entire neighborhood

and selects the solution with best objective function value. The corresponding algo-

rithm has been called LS RefineB. The second algorithm, called LS RefineF , uses

a first-improvement method. It explores N1 by considering a symbol at a time,

and selects the best location for it. The exploration of N1 terminates as soon as

the relocation of a symbol improves the objective function value. The search with

neighborhood N2 terminates as soon as the exchange of assignment between two

symbols produces an improving solution.

Due to the first-improvement technique, LS RefineF has different behavior with

different ordering of the symbols. Given a symbol i, its total frequency fi =
∑n

k=1 aik is an indicator of its importance in the objective function. Therefore,

we implemented the search of both N1 and N2 ordering the symbols by decreasing

values fi.

Before using any of the two versions of LS Refine to optimize a given solution

we transform it into canonical form (see Section 4.2.1), we compute the hashing

value (see Section 4.2.2) and we check the long term memory. If a solution with

the same hashing value was already encountered, we do not apply the local search

procedure to the current solution.

Simulated Annealing

We implemented two Simulated Annealing algorithms, called, respectively, SA2

and SA12. The first one uses neighborhood N2, while the second is based on the

combined neighborhood N1∪N2. This large neighborhood can be used in SA since

each solution is randomly selected and no exploration of the entire neighborhood is

required. We use a static cooling scheme which starts from an initial temperature

T0 and reduces the current temperature T every ∆T iterations by means of a linear

reduction factor α. In our experiments we set T0 to the objective function value of

the starting solution and α ∈ {0.95, 0.98}. The value ∆T is initially set to n and

16



then it is increased by n each time the temperature is updated. Moreover we apply

LS Refine to the current solution before any change of the temperature.

Tabu Search

Our Tabu Search algorithms TS2 and TS12 use, respectively, neighborhood

N1 and neighborhoods N1 and N2 in sequence. Two tabu lists TL1 and TL2 are

associated, respectively, with N1 and N2. TL1 is an array that stores in TL(i) the

last iteration in which symbol i was moved. Tabu list TL2 is an upper triangular

matrix which stores in element TL2(i, h) (i < h) the last iteration in which symbol

i and symbol h have been interchanged. The two tabu list lengths, namely lx

with x = 1, 2, are initialized at ⌊(minx + maxx)/2⌋. The lengths are dynamically

updated, accordingly to the status of the search. Let ϕ′ be a neighborhing solution

of the current solution ϕ, obtained with neighborhood Nx (x = 1, 2). If z(ϕ′) < z(ϕ)

then (improving move) we set lx = max(lx − 1, minx), otherwise (worsening move)

we set lx = min(lx +1, maxx). We also adopted a method to escape from stagnating

search phases. If the algorithm does not improve the best solution found so far for ∆

consecutive iterations, then we clean the two tabu lists and we perturb the solution

by randomly removing three symbols and reassigning them with a greedy approach

that selects the location minimizing the variation of the objective function value.

LS Refine is used to optimize the resulting solution.

ON the basis of preliminary computational experiments we set min1 = 5, max1 =

25, min2 = 15, max2 = 200 and ∆ = 400.

Variable Neighborhood Search

We started from the implementation by Taillard and Gambardella [42] which

uses the k-exchange neighborhoods. After some preliminary computational experi-

ments we set the minimum value of k to 3 and the maximum to n (i.e., we consider

a possible relocation of all symbols). Due to the size of the neighborhoods we set to

1 the value of nI , i.e., we try only one solution for each value of k. Our procedure

LS Refine is used to optimize each neighboring solution.

FANT

We implemented the Taillard [41] FANT algorithm using our procedure LS Refine

to optimize the solution generated by the ants. The only parameter of the method

17



is the value R of the reinforcement given to the pheromone corresponding to the

best solution so far. We have computationally evaluated the seven values R =

4, 5, . . . , 10.

7 Benchmark Instances

We have generated two sets of benchmark instances. The first one consists of

four instances associated with the frequencies of the symbol transitions of some

important languages currently in use, whereas the second set has been randomly

generated using statistical distributions similar to those of the instances in the first

set. We considered the English, French, Italian and Spanish languages.

A list of the most frequent worlds of each language has been taken from the fol-

lowing sources: For English and Spanish the frequency lists were taken from the web

site http://www.wiktionary.org; for French, a list of words extracted from the

CD-ROM of Monde Diplomatique (1987-1997) by prof. Jean Véronis (http://www.

up.univ-mrs.fr/~veronis); for Italian, words list have been taken from the lin-

guistic laboratory of the Scuola Normale Superiore of Pisa (http://alphalinguistica.

sns.it). These lists give us the frequency of appearance of each word in the cor-

responding language. The first 10,000 words were selected from each list. Using

a parsing method the frequency of the transition between each pair of consecutive

symbols has been obtained. Punctuation have been omitted from our count, while

space at the beginning and at the end of each word was included, as well as the

apostrophe and symbol ‘-’ (minus), for the English language. Table 1 gives, for each

language and for each symbol i, the total frequency fi =
∑n

k=1 aik. We use ‘ø’ to

denote the symbol ‘space’

The second set consists of randomly generated instances. For each language,

we considered its statistical properties by comparing the frequency distribution ob-

tained with 10,000 words with the distribution associated with the 1,500 words

with largest frequency. The statistical Pearson correlation test of the two distribu-

tions resulted to be greater than 0.96 for all languages. Therefore each of the 1,500

samples and the corresponding 10,000 words list share the same frequency profile.

We used the short lists to generate five random benchmarks for each language, by

giving to each pair of symbols a random frequency proportional to its weight in the

original list. The resulting frequency distributions are very close to the original one.

The two sets of instances are available in our web site www.or.unimore.it.

18



8 Computational Results

All the metaheuristic algorithms of section 6 have been coded in Delphi language

and run on a PC with an INTEL Pentium 4 running at 3.0 GHz under the Windows

XP operating system. We tested the algorithms on the 4 real benchmark instances

and on the 20 random ones. Each algorithm was given a time limit of 120 CPU

seconds for each parameter setting. In order to use integer arithmetic we multiplied

the (fractional) distance values bjl by 1000 and we truncated the resulting values,

thus obtaining a precision of 10−3.

In Tables 2 and 3 we report, for each instance and for each algorithm, the

absolute gap between the solution value provided by the algorithm and the value

of the best solution obtained by all algorithms. In these tables the algorithms use

procedure LS RefineF (implementing a first-improvement search) for finding the

local optima. The last row of each table gives the number of instances in which

the algorithm finds the best solution. The first two columns of each table give,

respectively, the number of the instance and the first letter of the corresponding

language, namely E,F,I and S for English, French, Italian and Spanish. The first

four rows refer to the real instances (first set), while the remaining rows present the

results obtained for the four groups of 5 random instances (second set). The number

of symbols varies from n = 29 for English to n = 38 for French. Concerning the size

of the grid some preliminary experiments showed us that fourteen rows and columns

are enough to accommodate any reasonable solution, indeed the best solutions we

found are contained in a 8× 8 grid. Further note that the size of the grid does not

affect significantly the overall computing time, since it has a direct impact only on

the implementation of Property 2.

Table 2 shows the results obtained with the simulated annealing and tabu search

algorithms, in the two versions which use neighborhood N2 or N1∪N2, as described

in Section 6 (namely algorithms SA2/SA12 and TS2/TS12 ). The last column re-

ports on the variable neighborhood search algorithm VNS. For each SA algorithm

two values of the reduction factor α of the cooling scheme have been tested. Algo-

rithm SA2 with parameter α set to 0.95 dominates all other variants of the simulated

annealing approach, with respect to the number of best solution found. The easiest

instances appears to be the Spanish ones, while the hardest are the French. The two

variants of the tabu search have similar and very good performances, since solve at

the best all instances but the French instances # 2 and # 11. Worth is noting that

no one of the algorithm tested in Table 2 finds the best solution for these instances.

Also the performances of the VNS are quite satisfactory, since it finds the best

solution for all instances but three.

19



Table 3 reports on the FANT algorithm with seven settings for the reinforce-

ment parameter R. In general the performances are quite good, but the behavior

changes with the parameter value. With R = 8 the algorithm is able to find the

best solution for all instances. The Italian and Spanish instances appear to be easy

for FANT, since the instances of both benchmark sets are solved at the best with

any R value. The French instances are the harder to solve and the gap with respect

to the best solution can be as large as 107.

The results obtained with the best-improvement technique for the local search

are summarized in Table 4. We report only the best choice for each algorithm. The

performances of all algorithms are worst with the best-improvement rather than

with the first-improvement. This is mainly due to the fact that the choice of the

next solution takes much more time, since the evaluation of the objective function

is a computational expensive task. Therefore, the number of visited solution within

the 120 seconds time limit is much smaller, while the improvement in the quality

of the single movement is not enough to determine an overall benefit.

Finally we report in Figure 6, for each of the real language benchmarks, the

layout and the corresponding solution value of the best assignment found during all

runs (we draw only the minimal grid containing each solution instead of the entire

14 × 14 grid). One can observe some general characteristics of these solutions:

• for each language the space is very close to the center of the layout;

• no vowel (with the exception of the ones with accents) is placed on the border

of the layout;

• all the locations in the corners of the keyboards are left empty (the overall

shape is more “circular” than rectangular);

• although theoretically possible, no empty location exists in the interior of the

layout.

9 Conclusions

In this paper we have considered the problem of designing new layouts for keyboards

of small devices (like PDA and Smartphones) with the objective of minimizing

the typing speed of an average message in a given language. The problem has

been addressed by several researchers in the Ergonomics domain, but it has been

given very limited attention in the Operations Research literature. We started

20



the paper by resuming the most relevant problems in keyboard design, then we

concentrated on keyboards that have to be used with a single finger. We have

shown that the corresponding optimization problem is a generalization of the well

known Quadratic Assignment Problem (QAP). We have recalled some of the most

effective metaheuristic algorithms for QAP and we have proposed extensions of some

of them to the keyboard design problem. Extensive computational experiments have

been performed with instances derived from word lists of English, French, Italian

and Spanish languages. These benchmark instances and the best solutions that we

obtained are published on the web.

The theoretical high quality of the new layouts requires now an assessment

directly involving users. From this study, that has to be performed in collaboration

with researchers in Ergonomics, we will get back either a confirmation of the quality

of the new keyboards, or some hits to modify the objective function in order to

consider in a broader way the human factors involved in the typewriting task.

References

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Computing.

Wiley, Chichester, UK, 1989.

[2] E. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization. Wiley,

Chichester, UK, 1997.

[3] W.P. Adams, M. Guignard, P.M. Hahn, and W.L. Hightower. A level-2

reformulation-linearization technique bound for the quadratic assignment prob-

lem. European Journal of Operational Research, 180:983–996, 2007.

[4] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA J. Comput.,

6:126–140, 1994.

[5] R. Battiti and G. Tecchiolli. Simulated annealing and tabu search in the long

run: A comparison on qap tasks. Computers and Mathematics with Applica-

tions, 28:1–8, 1994.

[6] R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems. SIAM,

2008. (To appear).

[7] R.E. Burkard and J. Offermann. Entwurf von Schreibmaschinentastaturen

mittels quadratischer Zuordnungsprobleme. Z. Oper. Res. (B), 21:B121–B132,

1977. (In German).

21



[8] R.E. Burkard and F. Rendl. A thermodynamically motivated simulation proce-

dure for combinatorial optimization problems. European Journal of Operational

Research, 17:169–174, 1984.

[9] S.K. Card, T.P. Moran, and A. Newell. The Psychology of Human-Computer

Interaction. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1983.

[10] J. Cardinal and S. Langerman. Designing small keyboards is hard. Theor.

Comput. Sci., 332:405–415, 2005.

[11] V. Černý. Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. J. Optim. Theory Appl., 45:41–51, 1985.

[12] A. Colorni, M. Dorigo, and V. Maniezzo. The ant system: optimization by a

colony of cooperating agents. IEEE Trans. Syst. Man Cybernetics, 26:29–41,

1996.

[13] D.T. Connolly. An improved annealing scheme for the QAP. European Journal

of Operational Research, 46:93–100, 1990.

[14] Z. Drezner, P.M. Hahn, and E. Taillard. Recent advances for quadratic assign-

ment problem with special emphasis on instances that are difficult for meta-

heuristic methods. Ann. Oper. Res., 139:65–94, 2005.

[15] J. Eggers, D. Feillet, S. Kehl, M.O. Wagner, and B. Yannou. Optimization of

the keyboard arrangement problem using an ant colony algorithm. European

Journal of Operational Research, 148:672–686, 2003.

[16] P.M. Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. J. of Experim. Psychology, 47:381–391, 1954.

[17] A.M. Frieze, J. Yadegar, S. El-Horbaty, and D. Parkinson. Algorithms for

assignment problems on an array processor. Parallel Comput., 11:151–162,

1989.

[18] L.M. Gambardella, E.D. Taillard, and M. Dorigo. Ant colonies for the QAP.

Journal of the Operational Research Society, 50:167–176, 1999.

[19] F. Glover. Tabu search - part i. ORSA J. Comput., 1:190–206, 1989.

[20] F. Glover. Tabu search - part ii. ORSA J. Comput., 2:4–32, 1990.

[21] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

22



[22] F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Ann.

Oper. Res., 41:12–37, 1993.

[23] W. Hargreaves, D. Rempel, N. Halpern, R. Markison, K. Kroemer, and

J. Litewka. Toward a more humane keyboard. In CHI ’92: Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 365–

368, New York, NY, USA, 1992. ACM.

[24] C.H. Heider. A n-step, 2-variable search algorithm for the component place-

ment problem. Naval Res. Log. Quart., 20:699–724, 1973.

[25] ISO/IEC 9995-8. Information systems keyboard layouts for text and office

systems part 8: Allocation of letters to keys of a numeric keypad. International

Organization for Standardization, 1994.

[26] T. James, C. Rego, and F. Glover. Multi-start tabu search and diversification

strategies for the quadratic assignment problem. IEEE Trans. on Systems,

Man and Cybernetics, 2008. (To appear).

[27] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-

nealing. Science, 220:671–680, 1983.

[28] Y. Li, L. Chen, and R. S. Goonetilleke. A heuristic-based approach to optimize

keyboard design for single-finger keying applications. Industrial Ergonomics,

36:695–704, 2006.

[29] I.S. MacKenzie, A. Sellen, and W.A.S. Buxton. A comparison of input devices

in element pointing and dragging tasks. In CHI ’91: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 161–166, New York,

NY, USA, 1991. ACM.

[30] I.S. MacKenzie and R.W. Soukoreff. Text entry fo mobile computing: models

and methods, theory and practice. Human-Computer Interaction, 17:147–198,

2002.

[31] S. MacKenzie. Fitts’ law as a research and design tool in human-computer

interaction. Human-Computer Interaction, 7:91–139, 1992.

[32] V. Maniezzo and A. Colorni. The ant system applied to the quadratic assign-

ment problem. IEEE Trans. Knowl. Data Engin., 11:769–778, 1999.

[33] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &

Operations Research, 24:1097–1100, 1997.

23



[34] D.A. Norman and D. Fisher. Why alphabetic keyboards are not easy to use:

Keyboard layout doesn’t much matter. Human Factors, 24:509–519, 1982.

[35] C.E. Nugent, T.E. Vollmann, and J. Ruml. An experimental comparison of

techniques for the assignment of facilities to locations. Operations Research,

16:150–173, 1968.

[36] M.A. Pollatschek, N. Gershoni, and Y.T. Radday. Optimization of the type-

writer keyboard by simulation. Angewandte Informatik, 17:438–439, 1976.

[37] M.S. Sanders and E.J. McCormick. Human Factors in Engineering and Design.

McGraw-Hill, 1993.

[38] J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem.

ORSA J. Comput., 2:33–45, 1990.

[39] K. Sörensen. Multi-objective optimization of mobile phone keymaps for typing

messages using a word list. European Journal of Operational Research, 179:838–

846, 2007.

[40] N.G. Swanson, T.L. Galinsky, L.L. Cole, C.S. Pan, and S.L. Sauter. The impact

of keyboard design on comfort and productivity in a text-entry task. Applied

Ergonomics, 28:9–16, 1993.

[41] E. Taillard. FANT: Fast ant system. Technical Report 46-98, IDSIA, 1998.

[42] E. Taillard and L.M. Gambardella. Adaptive memories for the quadratic as-

signment problem. Technical Report I-87-97, IDSIA, Lugano, 1999.

[43] E.D. Taillard. Robust taboo search for the quadratic assignment problem.

Parallel Comput., 17:443–455, 1991.

[44] M.R. Wilhelm and T.L. Ward. Solving quadratic assignment problems by

simulated annealing. IEEE Trans., 19:107–119, 1987.

24



Figure 1: Dvorak layout

(a) standard ISO

abcd efgh

ijkl mno

pqrs tuvwxyz

abcd ef gh

ijkl mno pqrs

t uvwxyz

ab cd ef gh

ijk l mn o

pqr s t uvwxyz

(b) optimal keyboards with 6,8 and 12 keys (from [10])

Figure 2: ISO and optimized contiguous keyboards

Figure 3: FITALY and Metropolis layouts

A B C
D E F

G H
I

Figure 4: Contour of a nine symbol assignment



D
A C
B E F

G

(a)
original

D
A C
B E F

G

(b)
translation

D
C A

F E B
G

(c)
vertical reflectional

symmetry

A B
D C E G

F

(d)
90◦ counter-clockwise

rotation

Figure 5: Equivalent solutions: (d) is in canonical form

J F W B X
Q U O T H C

M S ø E R K
P I N A Y -

Z G D L W
’

English

(1.199.070.166)

ù
Z J Q X

H C O U M ê
V I N E D B ä

û è T S ø L ’ ë
ô é R A P à
â K G F Y W

ı̂ ç ı̈

French

(13.491.323.058)

ù
è F G ’ Z

é H C I L B
ı̀ S O ø A M Y
à T N E R V W

Q U D P K
J ò X

Italian

(4.025.754.990)

Q é V á ú
F U N S T J

ü G D E ø O P K
ó I R A L Y W
X B M C H ñ

Z ı́

Spanish

(1.229.359.070)

Figure 6: Best layouts for the real language benchmarks



Table 1: Total frequency of each symbol for the real language benchmarks

English French Italian Spanish

sym fi sym fi sym fi sym fi

1 ø 1619668 ø 16897072 ø 5251966 ø 1852000

2 E 839158 E 11454806 E 2795124 E 1034122

3 T 640258 S 6214006 A 2699702 A 750196

4 O 531022 A 5747416 I 2466318 O 657204

5 A 513640 I 5694660 O 2261184 S 572004

6 N 469234 N 5636260 N 1732272 N 479322

7 I 469042 T 5388668 R 1448588 R 372966

8 H 455478 R 4951116 L 1403278 U 372214

9 S 392940 U 4505204 T 1314752 L 322082

10 R 391962 L 4334160 S 1109626 T 312322

11 D 294176 O 4208856 C 999684 D 299150

12 L 223712 D 3457398 U 784950 I 288410

13 U 185180 C 2524706 D 775526 M 210008

14 F 172990 P 2248476 P 684122 C 203402

15 M 169262 M 1990376 M 619602 P 169190

16 W 163458 é 1792198 V 370394 Q 141008

17 C 162484 ’ 1113636 G 358204 Y 95284

18 Y 131696 V 969024 H 308052 H 92014

19 G 126286 Q 845404 F 225670 B 86372

20 P 107224 G 774074 B 173678 V 74270

21 B 98694 F 720336 ’ 170618 G 69138

22 V 65426 B 562136 Z 162730 é 52890

23 K 47658 H 458702 Q 130262 á 50344

24 X 10082 à 387776 è 82692 ı́ 50306

25 J 7938 X 359796 à 56240 ó 31726

26 ’ 6422 è 251904 ù 33164 J 30150

27 Q 6412 J 215136 ò 20188 F 26886

28 Z 2130 Y 186548 é 18332 Z 15448

29 - 498 ê 116026 ı̀ 16964 ú 12076

30 ô 41520 X 4784 ñ 9688

31 Z 39700 K 4642 X 3702

32 K 38998 Y 4238 K 854

33 32760 J 3604 W 168

34 ù 26636 W 3372 ü 44

35 ı̂ 25786

36 û 17366

37 W 16038

38 â 14822

39 ı̈ 11086

40 ë 5686

41 ä 252



Table 2: SA, TS and VNS : first-improvement

N. L SA2 SA12 TS2 TS12 VNS

α = 0.95 α = 0.98 α = 0.95 α = 0.98

1 E 0 0 0 0 0 0 0

2 F 6.461.578 18.937.729 19.299.247 580.433 5.080.177 11.857.697 5.080.177

3 I 0 0 0 0 0 0 0

4 S 0 0 0 171.439 0 0 0

5 0 0 0 0 0 0 0

6 0 10.730 0 115.629 0 0 0

7 E 0 0 0 1.290.638 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 142.729 1.297.299 131359 0 0 0

11 243.404 243.404 243.404 521.211 243.404 243.404 243.404

12 F 0 368.964 0 991.021 0 0 0

13 0 0 1.341.765 312.749 0 0 0

14 0 33.895 0 748.529 0 0 659.504

15 0 92.783 0 92.144 0 0 0

16 0 1.183.330 0 221.130 0 0 0

17 I 0 1.162.935 0 887.635 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 14.806 0 0 0

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

22 S 0 0 0 0 0 0 0

23 0 52.141 0 0 0 0 0

24 0 0 0 0 0 0 0

#Best 22 14 20 11 22 22 21



Table 3: FANT : first-improvement

R

N L 4 5 6 7 8 9 10

1 E 0 0 0 0 0 0 0

2 F 0 9.645.961 9.645.961 18.937.729 0 5.467.701 0

3 I 0 0 0 0 0 0 0

4 S 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 115.629

7 E 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 324 0 0 0 0 243.404 243.404

12 F 0 0 0 0 0 1.001.120 0

13 0 0 0 0 0 0 0

14 284.888 0 0 284.888 0 0 33.895

15 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0

17 I 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0

22 S 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0

#Best 22 22 23 22 24 21 21



Table 4: Best-improvement technique

N. L SA2α=0.95 TS12 VNS FANTR=7

1 E 0 0 0 0

2 F 5.080.177 9.645.961 5.080.177 9.645.961

3 I 0 0 0 0

4 S 572.337 0 130.371 0

5 0 0 0 0

6 0 0 0 0

7 E 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 1.282.032 1.028.313

11 243.404 243.404 243.404 1.152.708

12 F 0 306.501 0 0

13 0 1.341.765 0 0

14 861.163 0 805.748 0

15 0 0 0 0

16 0 0 0 0

17 I 0 0 0 0

18 0 0 0 0

19 0 0 903.610 0

20 0 0 0 0

21 0 0 0 0

22 S 0 0 0 0

23 0 0 0 0

24 0 0 74.364 0

#Best 20 20 17 21


