The single-finger keyboard layout problem

Mauro Dell'Amico José Carlos Díaz Díaz Manuel Iori Roberto Montanari

Department of Sciences and Methods for Engineering University of Modena and Reggio Emilia

Outline

The QWERTY keyboard

A major de-facto standard New challenges from new devices

An Ergonomic point of view

n-fingers keyboards *s*-fingers keyboards

The problem

Mathematical model SK-QAP vs QAP

Metaheuristics

Neighborhoods Speed-ups QAP literature for SK-QAP

Benchmarks

Computational results

Real languages Random instances

Conclusions

The QWERTY keyboard— A major de-facto standard

- Keyboards are the most popular and effective devices to insert, edit, delete and update long chunk of information.
- Keyboards used with many fingers (*n-fingers*) were introduced more than 100 years ago.
- ► The first keyboard, was Q-W-E-R-T-Y: it is still the standard

ĩ		@2		#	9	5	%		^ 6	8		* 8		(9)		-		+	D	elete
Tab	Q		Ŵ	1	Ē	R		Т	1	Y.	P		ł		0		Р		{	}		1
Caps	A		S		D	F		G	2	н		J	ŀ	<	L	2					E	nter
Shift		Z		X		С	V		в	1	N	1	N		<)	N	1	?		Sł	hift	į
Ctrl		100	A	t	10.00									-40		0.00	A	It			1	Ctrl

The QWERTY keyboard— New challenges from new devices

- The proliferation of Portable Data Assistant (PDA), Smartphone and phones requires a strong improvement in the design of ad-hoc input devices.
- These devices are used in mobility and multitasking.
- The keyboards for portable systems are a still open design domain.

An Ergonomic point of view— *n*-fingers keyboards

Most research focused on the tentative to overtake QWERTY.

Typical measures are posture structure, discomfort produced, keying force, user acceptance etc.

An Ergonomic point of view— *n*-fingers keyboards — optimization

Fixed layout, *n* simbols \times *n* locations problem.

- M.A. Pollatschek, N. Gershoni and Y.T. Radday (1976) *Angewandte Informatik* – Simulation
- R.E. Burkard and J. Offermann (1977) Zeitschrift fr Operations Research, B
 Simulated annealing (7-10% improvement over QWERTY)
- Eggers, Feillet, Kehl, Wagner and Yannou (2003) European Journal of Operational Research
 - Combined multi-objective function
 - (i) distribution of the fingers load among all fingers;
 - (ii) the hits number needed to compose a text;
 - (iii) comfort and speed for hand changes;
 - (iv) comfort and speed for finger changes;
 - (v) avoidance of great steps among two different keys;
 - (vi) hits direction (it should move from little finger towards thumb).
 - Global score: Weighted linear combination
 - Ant Colony Optimization
 - English and German languages.

The objective is to improve the typing accurateness, as well as the time spent to edit a text.

The law introduced by Fitt (1954) model the time and difficulties required to move to a target area

$$f(\cdot) = \alpha + \beta \log_2\left(\frac{D}{A} + 1\right)$$

- α , $\beta~~=~$ prefixed constant values
- D = distance of the starting-ending keys
- A = size of the target key

An Ergonomic point of view— s-fingers keyboards — incomplete

Incomplete keyboards: less keys than language symbols (e.g., the 12 keys ISO used in most mobile phones).

Combinatorial problem : find a minimum size partition of an alphabet, allowing the users to type any word of a given dictionary so that each word is recognized without ambiguity.

Cardinal and Langerman (2005) Theoretical Computer Science

> abcd efgh iikl

mno

- NP-hard with two keys; several variants

pqrs

mno

iikl

UVWXVZ

Complete keyboards: one keys for each symbol.

Many proposal: FITALY, ABC, OPTI, METROPOLIS, HOOKE, LEWIS, ... (see MacKenzie and Soukoreff, 2002)

 Li, Chen and Goonetilleke (2006) Industrial Ergonomics
 Three fixed layout

- Evaluate the movement through the Fitts' law.
- A simple simulated annealing

The problem—

The *s*-finger keyboard layout problem: (SK-QAP)

- 1. a list of different symbols
- 2. identical unit square keys (or locations) arranged in a grid
- 3. each symbol is assigned to exactly one key;
- 4. each key may contain exactly one symbol.
- N.B. More keys than symbols \Rightarrow the layout is NOT known

One instance \rightarrow many layouts One layout \rightarrow many symbols' assignment !

The problem— Mathematical model

- $N = \{1, 2, \dots, n\}$ set of symbols
- $M = \{1, 2, \dots, m^2\}$ set of locations (keys)
- $\varphi: N \to M$ maps each symbol $i \in N$ to a location $\varphi(i)$ (φ is a solution)
- $\bullet \ \mathcal{S}$ set of all possible solutions φ

Matrices \overline{A} and B to denote frequencies and "distances"

 $\overline{A} = (\overline{a}_{ik})$: \overline{a}_{ik} is the frequency of the symbol pair (i, k) (in an average stat.); $B = (b_{ji})$: b_{ji} is the penalty to move from j to l (Fitts function, Eucl. dist.)

The problem can be stated as

$$z = \min_{\varphi \in S} \sum_{i=1}^{n} \sum_{k=1}^{n} \overline{a}_{ik} b_{\varphi(i)\varphi(k)}$$
(1)

Since matrix B is symmetric we can rewrite (1) as

$$z = \min_{\varphi \in S} \sum_{i=1}^{n} \sum_{k=i+1}^{n} (\overline{a}_{ik} + \overline{a}_{ki}) b_{\varphi(i)\varphi(k)} = \frac{1}{2} \min_{\varphi \in S} \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{\varphi(i)\varphi(k)}$$
(2)

where $A = (a_{ik})$ is a symmetric matrix with $a_{ik} = \overline{a}_{ik} + \overline{a}_{ki}$.

SK-QAP is a generalization of the classic Quadratic Assignment Problem (QAP)

- set $n = m \Rightarrow$ (i) one symbols for each location \Rightarrow (ii) fixed layout
- Previous works are all devoted to fixed layout

SK-QAP is a generalization of the classic Quadratic Assignment Problem (QAP)

– set $n = m \Rightarrow$ (i) one symbols for each location \Rightarrow (ii) fixed layout

- Previous works are all devoted to fixed layout
 - ▶ QAP is known to be strongly NP-hard, hence SK-QAP
 - QAP is challenging: Benchmark instances nug27, nug28 and nug30 (proposed in the '60s) have been solved exactly only recently in 20 CPU days, 5 CPU months, and 2.5 CPU years, respectively (see Adams, Guignard, Hahn and Hightower '07)
 - QAP has been attacked with several heuristics and metaheuristics (see, e.g., Drezner, Hahn and Taillard (2005), James, Rego and Glover, 2007).

Neighborhood \mathcal{N}_1 (contour filling) : Set of solutions obtained by moving each symbol to an empty contour location.

Neighborhood \mathcal{N}_1 (contour filling) : Set of solutions obtained by moving each symbol to an empty contour location.

Neighborhood \mathcal{N}_1 (contour filling) : Set of solutions obtained by moving each symbol to an empty contour location.

- The neighborhood size is $O(n^2)$.
- The exploration from scratch requires $O(n^3)$ time.
- Adapting the improvement proposed by Frieze, Yadegar, El-Horbaty (1989) for QAP it reduces to $O(n^2)$.

Neighborhood N_2 (pairwise-exchange): Set of solutions obtained by swapping the assignment of two symbols r and s.

- The neighborhood size is $O(n^2)$.
- The exploration from scratch requires O(n³) time (no improvement possible)

Neighborhood \mathcal{N}_k (k-exchange): Set of solutions obtained by permuting in all possible ways the assignments of k symbols.

- Generalization of the pairwise-exchange (with k = 2).
- The size of the neighborhood is $O(n^k)$.
- ► The objective function is re-computed from scratch for each solution (O(n²)

Property A solution of SK-QAP is not optimal if there is an empty line with symbols assigned on both sides.

Property A solution of SK-QAP is not optimal if there is an empty line with symbols assigned on both sides.

N.B. Special frequency matrices has optimal solutions with holes

А	В	С	
D		Е	
F	G	Η	

QAP vs SK-QAP

 $\begin{array}{ll} \mathsf{QAP} & \text{different solutions} \Leftrightarrow \text{different permutations } \varphi.\\ \mathsf{SK-QAP} & \text{different assignments } \varphi \Leftrightarrow \text{may layouts} \end{array}$

Property We can restrict the search to canonical solutions.

Metaheuristics— Speed-ups

We use a long term memory based on an hashing function

We use a long term memory based on an hashing function

We select a witness for each border

We use a long term memory based on an hashing function

We select a witness for each border

• Encode the symbols close to the four witness into a single integer (code)

• Two solutions are supposed identical if the two codes are equal.

Simulated Annealing (SA)

Burkard and Rendl (1984) Wilhelm and Ward (1987) Connolly 1990

Tabu Search (TS)

Skorin-Kapov (1990) Taillard (1991) *Robust Tabu Search* Battiti and Tecchiolli (1994) *Reactive Tabu Search* Connolly 1990

Variable Neighborhood Search (VNS)

Taillard and Gambardella (1999)

Ant Colony Optimization (ACO)

Maniezzo and Colorni (1999) Gambardella, Taillard and Dorigo (1999) Taillard (1998) *Fast ANT* (FANT)

***** Advertising *****

R. Burkard, M.Dell'Amico, S.Martello *SIAM* in print (scheduled November 2008)

(Bipartite Matching, Linear Sum, Algebraic, Bottleneck, Quadratic, Multi-index, Software Codes, etc.)

Local Search

LS_Refine

- 1. Find a local optimum of value \textbf{z}_1 with neighborhood \mathcal{N}_1
- 2. Try to improve the solution with \mathcal{N}_2 , giving z_2
- 3. if $z_2 > z_1$ then goto 1.

Two strategies

best-improvement: selects the best solution of the neighborhood *first-improvement* selects the first improving solution

Metaheuristics

SA, TS, VNS and FANT implementd with

- a. \mathcal{N}_1 , \mathcal{N}_2 , $\mathcal{N}_1 \cup \mathcal{N}_2$
- b. speed-ups for SK-QAP
- c. the two strategies

English, French, Italian and Spanish languages.

List of the most frequent worlds								
English and Spanish http://www.wiktionary.org								
French	Monde Diplomatique (1987-1997)							
(http://www.up.univ-mrs.fr/~ve								
Italian	Scuola Normale Superiore of Pisa							
	(http://alphalinguistica.sns.it)							

- The first 10,000 words have been used
- The frequency of the transition between each pair of consecutive symbols was computed
- Punctuation was omitted, but for 'space' and symbols ' and
 for English

Benchmarks—

Language symbols by decreasing frequencies

English

ØETOANIHSRDLUFMWCYGPBVKXJ'QZ-

French øESAINTRULODCPM é 'VQGFBHàXèJYêôZKçù îûWâïëä

<mark>Italian</mark> ØEAIONRLTSCUDPMVGHFB′ZQèàùòéìXKYJW

<mark>Spanish</mark> øEAOSNRULTDIMCPQYHBVGéáíóJFZúñXKWü

RANDOM INSTANCES

Five random benchmarks have been generated from the statistical distribution of the frequencies of each real language.

Algorithms coded in Delphi language and run on a PC Pentium 4 at 3.0 GHz under Windows XP with a Time Limit of 120 CPU seconds

Computational results— Real languages

Algorithms coded in Delphi language and run on a PC Pentium 4 at 3.0 GHz under Windows XP with a Time Limit of 120 CPU seconds

Best solutions

English (1.199.070.166)

French (13.491.323.058)

Italian (4.025.754.990)

Spanish (1.229.359.070)

Computational results— Real languages

Algorithms coded in Delphi language and run on a PC Pentium 4 at 3.0 GHz under Windows XP with a Time Limit of 120 CPU seconds

DELL' AMICO

Italian (4.025.754.990)

Computational results— Real languages

Computational results— Random instances

Ν.	L	S	A2	SA	12	TS2	TS12	VNS
		$\alpha = 0.95$	$\alpha = 0.98$	$\alpha = 0.95$	$\alpha = 0.98$			
1		0	0	0	0	0	0	0
2		0	10.730	0	115.629	0	0	0
3	English	0	0	0	1.290.638	0	0	0
4		0	0	0	0	0	0	0
5		0	0	0	0	0	0	0
1		0	142.729	1.297.299	131359	0	0	0
2		243.404	243.404	243.404	521.211	243.404	243.404	243.404
3	French	0	368.964	0	991.021	0	0	0
4		0	0	1.341.765	312.749	0	0	0
5		0	33.895	0	748.529	0	0	659.504
1		0	92.783	0	92.144	0	0	0
2		0	1.183.330	0	221.130	0	0	0
3	Italian	0	1.162.935	0	887.635	0	0	0
4		0	0	0	0	0	0	0
5		0	0	0	14.806	0	0	0
1		0	0	0	0	0	0	0
2		0	0	0	0	0	0	0
3	Spanish	0	0	0	0	0	0	0
4		0	52.141	0	0	0	0	0
5		0	0	0	0	0	0	0
	#Best	22	14	20	11	22	22	21

- We discussed the single finger keyboard layout problem: an open domain
- We modeled the problem as a generalized Quadratic Assignment Problem
- We designed specialized metaheuristic algorithms
- ► We proposed benchmark instances from real languages

Data and results: www.or.unimore.it

