
A Branch-and-Cut Algorithm for the Double
Traveling Salesman Problem with Multiple Stacks

Manuel Alba∗ Jean-François Cordeau† Mauro Dell’Amico∗

Manuel Iori∗

December 7, 2010

Abstract

The double traveling salesman problem with multiple stacks is a variant of
the pickup and delivery traveling salesman problem in which all pickups must
be completed before any of the deliveries. In addition, items can be loaded
on multiple stacks in the vehicle and each stack must obey the last-in-first-out
policy. The problem consists in finding the shortest Hamiltonian cycles covering
all pickup and delivery locations while ensuring the feasibility of the loading
plan. We formulate the problem as two traveling salesman problems linked by
infeasible path constraints. We also introduce several strengthenings of these
constraints which are used within a branch-and-cut algorithm. Computational
results performed on instances from the literature show that the algorithm
outperforms existing exact algorithms. Instances with up to 28 requests (58
nodes) have been solved to optimality.

Keywords: Traveling salesman problem, pickup and delivery, LIFO loading,
branch-and-cut.

1 Introduction

In the classical Pickup and Delivery Traveling Salesman Problem (PDTSP), a single
uncapacitated vehicle must serve a set of transportation requests, each defined by an
origin-destination pair. The problem consists in finding a least-cost Hamiltonian cycle

∗DISMI, University of Modena and Reggio Emilia, Via Amendola 2, Padiglione Buccola, 42122,
Reggio Emilia, Italy.
†Canada Research Chair in Logistics and Transportation and CIRRELT, HEC Montréal, 3000

chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7 Canada.

on the pickup and delivery vertices with the additional constraint that the delivery
vertex of any given request must be visited after the corresponding pickup vertex.
The Double Traveling Salesman Problem with Multiple Stacks (DTSPMS) is a variant
of the PDTSP in which all pickups must be performed before all deliveries, and
collected items can be inserted in multiple stacks in the vehicle. The vehicle must
first perform a Hamiltonian cycle on the set of pickup vertices before it performs
a second Hamiltonian cycle on the set of delivery vertices. Each customer request
consists of one item and the vehicle has a loading space divided into stacks of fixed
height which must obey the Last-In-First-Out (LIFO) policy: each loaded item is to
be placed at the top of a stack and only the items located at the top of a stack can
be unloaded from the vehicle. A routing cost is associated with the arcs between the
vertices, and the aim of the problem is to find two Hamiltonian cycles (one on the
pickup vertices and one on the delivery vertices) of minimum total cost for which
there exists a feasible loading plan satisfying the stack heights and the LIFO policy.

A simple example with four customers and a vehicle having s = 2 stacks of height
l = 2 is represented in Figure 1, where, from left to right, the pickup tour, the delivery
tour and a feasible loading plan are depicted. The pickup tour starts from and ends at
the pickup depot, located at vertex 0 of the pickup region. While visiting the pickup
points, the items are loaded into the stacks from bottom to top. The vehicle then
moves to the delivery region. The second tour visits all delivery points and unloads
the corresponding items from the top of the stacks.

0

h

i

jk

P
0

i

k

hj

D

h j

i k

l

s

Figure 1: A simple DTSPMS example, with a pickup tour (left), a delivery tour
(middle) and a loading plan (right).

The DTSPMS was introduced by Petersen and Madsen (2009) and was motivated
by a real-world application arising in the transportation of pallets by trucks between a
pickup and a delivery region. It belongs to the class of combined routing and loading
problems: the routing part consists in solving a Traveling Salesman Problem (TSP)
for each region, while the loading part consists in finding a feasible loading plan for
the items.

2

Petersen and Madsen (2009) first proposed a mathematical formulation of the
DTSPMS and a simulated annealing heuristic that was computationally tested on a
set of instances which are now widely used as benchmarks. Later, Lusby et al. (2010)
proposed an exact algorithm based on two iterative phases: in the first phase, the k
best solutions are generated for each of the two separate TSPs; in the second phase,
one attempts to find a feasible loading for given couples of TSP solutions. The process
is iterated, considering solution pairs in non-decreasing order of total cost, until a
feasible loading is found. Petersen et al. (2010) also studied several mathematical
models and proposed branch-and-cut algorithms. One of these approaches, based
on a two-index vehicle flow formulation with additional infeasible path constraints
generated dynamically, clearly obtained better results than the others. Our work
is based on a similar approach. Very recently, Carrabs et al. (2010) presented an
enumerative branch-and-bound algorithm for the special case in which the vehicle
has exactly two stacks.

With respect to heuristic solution approaches, Felipe et al. (2009a,b) presented
neighborhood structures and a variable neighborhood search algorithm, whereas Côté
et al. (2009) introduced a large neighborhood search procedure. The complexity of the
DTSPMS and of several subproblems that may arise from it is discussed by Toulouse
and Wolfler Calvo (2009), Casazza et al. (2009), and Bonomo et al. (2010). Finally,
an approximation scheme was proposed by Toulouse (2010).

The DTSPMS is also related to the PDTSP with LIFO Loading (PDTSPL) which
can be seen as a variant of the DTSPMS in which the vehicle has a single LIFO
stack, and pickups do not have to be completed before deliveries can start. Several
algorithms were proposed for the PDTSPL: variable neighborhood search (Carrabs
et al., 2007b), additive branch-and-bound (Carrabs et al., 2007a) and branch-and-
cut (Cordeau et al., 2010). For surveys on pickup and delivery problems and on
combined routing and loading, we refer the reader to Cordeau et al. (2007) and to
Iori and Martello (2010), respectively.

The contribution of this paper is to introduce valid inequalities and a new branch-
and-cut algorithm for the DTSPMS. Computational experiments show that this new
algorithm outperforms existing exact algorithms and can solve some instances with
up to 28 requests (58 nodes).

The rest of this paper is organized as follows. The next section provides a formal
definition and a mathematical formulation of the problem. Section 3 focuses on
solving the loading problem. This is followed by valid inequalities in Section 4 and
by the branch-and-cut algorithm in Section 5. Computational experiments are then
reported in Section 6 and are followed by the conclusion.

3

2 Definition and Mathematical Formulation

To model the DTSPMS we start from the classical two-index vehicle flow formulation
for the TSP, with the addition of infeasible path constraints to represent the loading
subproblem. This formulation is based on the idea of decomposing the problem into
its routing and loading components. The goal of the routing component is to construct
two optimal TSP tours, one for the pickup region and one for the delivery region.
Then, by iteratively solving the loading subproblem, we identify cuts that eliminate
(partial) tours that do not allow the construction of a feasible loading plan.

More formally, let n denote the number of customer requests. We define the
DTSPMS on two complete directed graphs GP = (V P , AP) and GD = (V D, AD),
where V P and AP are, respectively, the vertex and arc set in the pickup region, and
V D and AD the vertex and arc set in the delivery region. We make use of the notation
GT = (V T , AT), with T ∈ {P,D}, to define properties that apply to both graphs.

For T ∈ {P,D}, we define V T = {0T} ∪ V T
0 , where vertex 0T represents the

depot at which each tour starts and ends. Subsets V P
0 = {1P , . . . , nP} and V D

0 =
{1D, . . . , nD} represent the sets of pickup and delivery vertices, respectively. Each
request i is associated with pickup vertex iP and delivery vertex iD, i = 1, . . . , n.
When no confusion arises we will use the symbol i to denote both iP and iD. Each
arc (i, j)T ∈ AT has a non-negative routing cost cTij, T ∈ {P,D}. Without loss of
generality we suppose that the routing cost from the pickup depot 0P to the delivery
depot 0D is zero.

The demand of each customer request i consists of a single unit-size item (e.g., a
pallet), that has to be loaded when visiting iP and unloaded at iD. The vehicle has a
loading space composed of s stacks, each of which can accommodate at most l items.
The DTSPMS requires that the LIFO policy be satisfied: if the pickup vertex iP is
visited before the pickup vertex jP and iP and jP are loaded into the same stack,
then the delivery vertex jD must be visited before the delivery vertex iD.

The DTSPMS consists in finding two tours, one for each region, of minimum total
cost, starting from depot 0T , visiting every vertex in V T

0 exactly once, and ending at
depot 0T , for T ∈ {P,D}.

To formulate the DTSPMS, we associate to each arc (i, j)T ∈ AT , T ∈ {P,D},
a binary variable xT

ij taking value 1 if and only if vertex jT is visited immediately
after vertex iT by the vehicle. The existence of the two tours, independently from the
loading problem, can then be formulated as the following integer linear program.

Minimize
∑

(i, j)T ∈ AT

T ∈ {P,D}

cTij x
T
ij (1)

4

subject to ∑
j∈V T

xT
ij = 1 i ∈ V T , T ∈ {P,D} (2)

∑
i∈V T

xT
ij = 1 j ∈ V T , T ∈ {P,D} (3)∑

i∈S

∑
j∈S

xT
ij ≤ |S| − 1 S ⊆ V T , |S| ≥ 2, T ∈ {P,D} (4)

xT
ij ∈ {0, 1} (i, j) ∈ AT , T ∈ {P,D}. (5)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3)
ensure that each pickup and delivery vertex is visited exactly once. Constraints (4)
ensure the connectivity of the solution.

To model the loading component of the problem, we introduce an additional set
of infeasible path constraints. Let us denote by Q = {p1, p2, . . . , pq} ⊆ V P

0 a path
visiting q vertices in the pickup region, and by A(Q) the set of arcs used by path Q,
i.e., A(Q) = {(p1, p2)

P , (p2, p3)
P , . . . , (pq−1, pq)

P}. Similarly, let us denote by F =
{d1, d2, . . . , df} ⊆ V D

0 a path visiting f vertices in the delivery region, and by A(F)
the set of arcs used by path F , i.e., A(F) = {(d1, d2)

D, (d2, d3)
D, . . . , (df−1, df)D}.

We say that a pair (Q,F) of paths Q ⊆ V P and F ⊆ V D is load-infeasible if there
exists no feasible loading of the requests belonging to both paths.

We impose the existence of a feasible loading to the associated routing solution
by using the following constraint for any load-infeasible pair of paths (Q,F):

q−1∑
j=1

xP
pj ,pj+1

+

f−1∑
j=1

xD
dj ,dj+1

≤ |A(Q)|+ |A(F)| − 1. (6)

A simple example of constraint (6) is given in Figure 2, where the first path
denotes Q (i.e., the path in the pickup region) and the second F (i.e., the path in the
delivery region). Let us suppose that the vehicle has two stacks. Indeed, i cannot
be loaded in the same stack as j or k because of the LIFO requirement. Similarly,
j cannot be loaded in the same stack as k. It follows that at least three stacks are
needed to feasibly load the requests belonging to these two paths. Hence, at most
nine arcs can be chosen among the ten depicted in the figure.

Determining if a pair of paths is load-infeasible can be done through specialized
algorithms which will be described in Section 3.

5

i j k

i j k

Figure 2: Graphical representation of an infeasible path constraint.

3 Solution of the Loading Problem

If no limit is imposed on the height of the stacks, then checking whether the items
can be loaded into the stacks, given the pickup and delivery routes, is easy and can be
done in polynomial time (see, e.g., Casazza et al., 2009). However, when the stacks
are capacitated the loading problem may become difficult.

Following Bonomo et al. (2010), we define the problem of determining a feasible
loading plan, if any, given two pickup and delivery tours as the Pickup and Delivery
Tour Combination (PDTC). As it has been observed by Toulouse and Wolfler Calvo
(2009), Casazza et al. (2009) and Bonomo et al. (2010), the PDTC is directly related
to the Bounded Vertex Coloring Problem (BVCP). The BVCP generalizes the classical
minimum coloring problem by imposing an upper bound on the number of times each
color can be used. The PDTC can be seen as a BVCP where the number of colors
corresponds to the number of stacks, and the upper bound corresponds to the fixed
stack height. The BVCP is NP-hard in the general case and for any fixed value of
l ≥ 3 (Hansen et al., 1993).

In the case of the PDTC, however, the underlying graph is a permutation graph.
On the basis of this observation, Bonomo et al. (2010) showed that the PDTC is
NP-complete even if l is fixed, but can be solved in O(ns2+s+1s3) time. Hence, it is
polynomially solvable for fixed s.

We solve the PDTC by using simple lower and upper bounds, followed by a com-
plete enumerative algorithm when necessary. Let us consider two paths, a pickup
path Q and a delivery path F , and let us define the subset I of customer requests
appearing in both paths. To determine whether a feasible loading for the requests
in I exists, we use the following procedure. We start by performing a simple check:
if I contains s customers or less, then a feasible loading surely exists, as each item
can be loaded alone in a different stack. Otherwise, we construct a precedence graph
G′ = (I ′, A′), where I ′ is composed of the elements in I plus two additional vertices:
an origin vertex o and a destination vertex t, and an arc (i, j) ∈ A′ is defined if i
precedes j both in the pickup path and in the delivery path, i.e., i and j cannot be
loaded in the same stack. For example, the precedence graph associated to Figure 1 is
given in Figure 3. Note that the original pickup and delivery depots are not included

6

in I ′ and that the precedence graph constructed in this way is acyclic.
A lower bound on the minimum number of stacks needed to load all the items can

be obtained by relaxing the constraint on the maximum height of each stack and then
computing a maximum clique among the vertices in I. Let us denote this clique by
C. If the size of C is larger than s, then the loading is clearly infeasible. Finding the
maximum clique of a general graph is NP-hard. Fortunately, the precedence graph
G′ is not only acyclic but also transitive: if i precedes j and j precedes k, then i
precedes k (see also Figure 2). As a result, the maximum clique can be found by
computing the longest path from o to t, through the classical critical path method
(CPM) labeling algorithm (Kelley, 1961).

o

i k

t

jh

Figure 3: The precedence graph associated to the solution depicted in Figure 1.

If |C| ≤ s we try to compute an upper bound on the minimum number of stacks
required by executing a simple greedy procedure that tries to construct a solution
using the output of the CPM algorithm. This output provides, for each vertex i, a
minimum index Tmin(i) and a maximum index Tmax(i) of the stack in which the cor-
responding item can be loaded. Each item i having Tmin(i) = Tmax(i) (i.e., belonging
to a longest path) is loaded in the corresponding stack. If by doing so we exceed the
maximum height of a stack the procedure stops. Otherwise, it continues by taking
into consideration the items not belonging to a longest path. Each item i is selected
in non-decreasing value of Tmin(i), breaking ties by increasing values of i, and assigned
to the stack of lowest index that can accommodate it. If all items are assigned, then
the feasibility of the loading problem has been proved. Otherwise, an enumeration
tree is constructed.

The enumeration tree simply considers each item i in turn, in the same order as
in the greedy procedure. It creates a node for any possible assignment of i to one of
the stacks in the interval [1, s]. The tree then erases all nodes for which the maximum
height of the stack or the LIFO requirements are violated, and iterates with the next
item. The complexity of the enumeration procedure is s|I| in the worst case, but the
procedure turns out to be very fast in practice.

7

Bonomo et al. (2010) showed that the PDTC can be solved in polynomial time
for fixed s. In the DTSPMS, s is indeed a fixed input data. However, for the test
cases addressed in the literature, where s ≤ 4 and |I| ≤ 28, the complexity of the
complete enumeration (O(s|I|)) is much smaller than the complexity of the polynomial
algorithm O(|I|s2

). Therefore we adopted the complete enumeration approach. This
choice is confirmed by our computational experiments, where the execution of our
loading procedure never took more than 0.1 CPU second.

It is worth noting that, as in most combined routing and loading problems, the
loading aspect makes the routing problem much more difficult. Indeed, the size of
DTSPMS instances that can be solved to optimality is dramatically smaller than
for the classical TSP. This additional difficulty does not come from the fact that
the loading problem is difficult, as this is also true for other well-known combined
routing and loading problems, but is rather due to the small size of the set of feasible
solutions.

4 Strengthening the Infeasible Path Constraints

In this section, we explain how the linear programming relaxation of model (1)–(6)
can be strengthened by the introduction of valid inequalities. The first family of
inequalities is based on the classical tournament constraints which are often used to
improve infeasible path constraints in asymmetric formulations for the TSP (see, e.g.,
Ascheuer et al., 2000). More specifically, constraint (6) can be strengthened as follows
for any load-infeasible pair of paths (Q,F):

q−1∑
j=1

q∑
h=j+1

xP
pj ,ph

+

f−1∑
j=1

f∑
h=j+1

xD
dj ,dh
≤ |A(Q)|+ |A(F)| − 1. (7)

A graphical representation of constraint (7) is given in Figure 4. The arcs that
have been added with respect to Figure 2, hence with respect to constraint (6), derive
from the fact that each vertex is visited just once. If one of these additional arcs is
used, then two of the original arcs contained in (6) cannot be used and the inequality
is still valid.

Looking at Figure 4 suggests a further improvement to the above constraint. It
is obvious that the loading violation originates from the clique formed by vertices i,
j and k. It is thus independent from the order of visit of the vertices that appear
between i and j, or j and k, in one of the two paths. One can thus add reverse arcs
among the subset of vertices that belong to the path but not to the clique. This idea
is depicted in Figure 5.

More formally, let us denote by C a clique formed by the vertices contained in
the undirected version of the precedence graph associated to the two paths. For

8

i j k

i j k

Figure 4: Graphical representation of a tournament constraint.

each vertex c ∈ C, let us denote by SP
c (resp. SD

c), the subset of vertices contained
in the pickup path (resp. delivery path), and appearing between vertex c and the
following vertex belonging to the clique, if any. If |C| > s then the above tournament
constraint can be strengthened into the following lifted tournament constraint for any
load-infeasible pair of paths (Q,F):

q−1∑
j=1

q∑
h=j+1

xP
pj ,ph

+
∑
c∈C

∑
pj ,ph∈SP

c :j>h

xP
pj ,ph

+

f−1∑
j=1

f∑
h=j+1

xD
dj ,dh

+
∑
c∈C

∑
dj ,dh∈SD

c :j>h

xD
dj ,dh

≤ |A(Q)|+ |A(F)| − 1. (8)

Note that some subsets SP
c and SD

c may be empty, as depicted again in Figure 5.
Note also that there may exist paths Q and F which are load-infeasible although there
is no clique C having |C| > s. In this case, we cannot lift the original tournament
constraint.

Another family of valid inequalities derives from the position of a vertex in the
stack in which it is loaded. Consider for example Figure 6 and assume for the moment
that sl = n. The pickup path starts from the depot and ends at vertex k. Suppose
σP (k) is the position of vertex k in this path, i.e., the number of arcs that separate
it from the depot along the path. It follows that its distance from the bottom of the
stack in which it is loaded is at most σP (k). Similarly, let us consider a delivery path
starting from the delivery depot and ending at vertex k, and let us denote by σD(k)
the position of vertex k in this path. It follows that its distance from the top of the

9

i j k

i j k

Figure 5: Graphical representation of a lifted tournament constraint.

stack in which it is loaded is at most σD(k). Hence, if σP (k) + σD(k) ≤ l then the
pair of paths is infeasible. In Figure 6 we have σP (k) = 2 and σD(k) = 3, hence the
pair of paths is infeasible for any l ≥ 5.

In the case where n < sl some positions in the stacks can be left empty and the
above condition becomes σP (k) + σD(k) + (sl − n) ≤ l. It follows that, for any load-
infeasible pair of paths (Q,F) with both paths starting from 0 and ending at vertex
k and such that σP (k) + σD(k) + (sl − n) ≤ l, a valid inequality can be formulated
as:

q−1∑
j=1

q∑
h=j+1

xP
pj ,ph

+

q−1∑
j=3

j−1∑
h=2

xP
pj ,ph

+

f−1∑
j=1

f∑
h=j+1

xD
dj ,dh

+

f−1∑
j=3

j−1∑
h=2

xD
dj ,dh

≤ |A(Q)|+ |A(F)| − 1. (9)

A similar reasoning can also be applied to paths Q and F respectively ending at
(instead of starting from) the pickup depot and at the delivery depot. One obtains
an inequality very similar to (9), but with indices 0 and k reversed.

Finally, we can apply a reasoning similar to that of the lifted tournament con-
straints (8) to a pair of paths whose pickup path ends at the pickup depot and whose
delivery path starts from the delivery depot. This situation is represented in Figure
7. Let us suppose we have a clique C of size s, hence feasible. We try to prove its
infeasibility by enlarging the pickup path from the last vertex up to the pickup depot.

10

0 k

0 k

k

k

σP (k)

σD(k)

Figure 6: Graphical representation of an infeasible pair of paths starting from the
pickup and the delivery depot.

Similarly, we try to enlarge the delivery path backward from the first vertex back to
the delivery depot. Suppose that we succeed in doing this and we find two additional
sets of vertices, SP

c in the pickup region and SD
c in the delivery region. If one of

these two sets contains a vertex that is not contained in the other set, then the pair
of paths violates the LIFO requirements. Consider for example Figure 7. Vertices i
and j are incompatible and have to be loaded into two different stacks. Vertex k is
loaded after i and j (it belongs to SP

c) in the pickup path and unloaded after them
in the delivery path (it does not belong to SD

c). Hence an additional stack is needed
to load k, and the example depicted in the Figure 7 is infeasible for s ≤ 2 stacks.

For any load-infeasible pair of paths (Q,F) with Q ending at 0 and F starting
from 0, we thus obtain the following valid inequality:

q−1∑
j=1

q∑
h=j+1

xP
pj ,ph

+
∑
c∈C

∑
pj ,ph∈SP

c :j>h

xP
pj ,ph

+

f−1∑
j=1

f∑
h=j+1

xD
dj ,dh

+
∑
c∈C

∑
dj ,dh∈SD

c :j>h

xD
dj ,dh

≤ |A(Q)|+ |A(F)| − 1, (10)

where C is a clique in the incompatibility graph whose cardinality is equal to s,
and ST

c , T ∈ {P,D}, is the subset of vertices in the path between vertex c and the
following vertex belonging to C.

11

i j k 0

0 i j

Figure 7: Graphical representation of an infeasible pair of paths ending at the pickup
depot and starting from the delivery depot.

5 Branch-and-Cut

We now describe our branch-and-cut algorithm by focusing on the initialization steps,
the separation strategies for valid inequalities, and the branching.

5.1 Starting model

At the root node of the enumeration tree we initialize our model with constraints (2)
and (3). We set xT

ii = 0 for i = 0, . . . , n and T ∈ {P,D}. We also add the subset
of inequalities (4) with |S| = 2, i.e., xT

ij + xT
ji ≤ 1 for i, j = 0, . . . , n, i < j and

T ∈ {P,D}. In the case where n ≥ (s − 1)l + 2, we add the very simple cases of
inequality (9) where the paths have unit length, i.e., xP

0i + xD
0i ≤ 1 and xP

i0 + xD
i0 ≤ 1

for i = 1, . . . , n.

5.2 Separation strategy

As is typically done in branch-and-cut algorithms for the TSP, subtour elimination
constraints (4) are separated exactly by solving O(n) maximum flow problems.

Infeasible paths constraints (6) are separated exactly as follows. We first identify
all possible fractional paths in GP and GD starting from any vertex i = 1, . . . , n
and ending at any vertex (initially excluding the depots). We keep only the paths
that can possibly lead to a violation, i.e., those for which the sum of the associated

12

variables is greater than their length minus one. We store these paths in two separate
pools, one for the pickup region and one for the delivery region, in non-decreasing
value of length, breaking ties by non-increasing sum of the values of the variables
associated with the arcs in the path. We then check any possible pair of paths in this
order for a possible violation. We check only pairs for which the sum of the associated
variables could lead to a violated inequality. The loading violation is checked using the
procedure described in Section 3. The separation of the tournament constraints (7) is
done in the same way, but the sum of the values of the arc variables is computed by
taking the additional arcs into consideration. In our final computational experiments
we disregarded the infeasible paths separation and used only the separation of the
stronger tournament constraints.

For the lifted tournament constraints (8), we use a heuristic separation procedure.
Recall that we invoke the CPM algorithm when we check a possible pair of paths for
a loading violation. Any time this procedure returns a clique having a size larger than
s, then the path is infeasible and we can add to the model the associated constraint
(8), which is stronger than (7). If more than one clique of size larger than s exists,
we add a cut for every such clique.

The separation of constraints (9) is performed by identifying all possible (possibly
fractional) paths in GP and GD starting from both the pickup and the delivery depot,
and by checking whether the loading condition (σP (k) + σD(k) + (sl − n) ≤ l) is
violated. The same is done for paths that end at the pickup and the delivery depot.

The separation of constraints (10) is performed heuristically in a similar way to
constraints (8). If the CPM algorithm returns a clique with a size exactly equal to
s, then we try to find a vertex k that lies on the pickup path between the last vertex
of the clique and the depot, and does not lie in the delivery path between the depot
and the first vertex of the clique, or vice-versa. If we succeed, a cut is added to the
model.

As soon as an infeasible pair of paths is found, we add the corresponding cut to
the model and this terminates the separation step. When dealing with symmetric
cost matrices (as was the case in our computational experiments), we also add the
“reverse” cut, i.e., the cut obtained by reversing the pickup and the delivery paths.

On the basis of computational experiments we decided to use local cuts instead
of global ones, i.e., each cut is included in the linear programming relaxation of the
current node and of all descendent nodes, but not in that of the other nodes in the
tree. We also experimented with other strategies that combined the generation of
local and global cuts, but all such strategies proved to be less effective than adding
just local cuts.

13

5.3 Branching

We use the Cplex strong branching strategy to perform branching. In computational
experiments, this gave better performance than any other strategy we have tested. In
particular, we have tried to extend the pickup path from the pickup depot by always
choosing the variable of highest value (one-way extension). We have also attempted
extending simultaneously both the pickup and the delivery path by choosing the
variable of highest value (two-way extension), and extending the two paths according
both to the forward and backward direction (four-way extension). In each case we
reduced the graph by removing variables incompatible with the decisions already
taken. The strong branching of Cplex turned out to be better than the one-way and
two-way extension, and just slightly better than the four-way extension. We have also
considered other strategies, such as branching first to 1 and then to 0 or vice-versa,
but these did not improve the results.

6 Computational Results

Our branch-and-cut algorithm was implemented in C++ using Cplex 12 in sequen-
tial (non-parallel) mode as integer linear programming solver, and all experiments
were performed on a 3 GHz Intel Core 2 Duo computer. Several different datasets
were considered, all taken from the literature. We refer the reader to the website
www.or.unimore.it/DTSP/dtsp.html for detailed results on each single instance.

We have first run some experiments on the test instances of Petersen and Madsen
(2009) to assess the impact of the valid inequalities described in Section 4. What
we have observed is that these inequalities have very little impact on the root node
relaxation lower bound, but that they nevertheless improve the performance of the
algorithm by reducing the number of nodes explored and the overall computing time
for proving optimality. The inequalities were thus used in all further experiments.

In Table 1 we report the results obtained by our algorithm along those of Petersen
et al. (2010), Carrabs et al. (2010), and Lusby et al. (2010) on the instances of Petersen
and Madsen (2009). Each instance is identified by its name (R05 to R09), the number
of stacks s, the height of these stacks l, and the number of requests n. We have used as
an initial upper bound the cost of the heuristic solution found by running the heuristic
algorithm of Côté et al. (2009), which was provided to us by one of the authors. The
initial upper bound supplied to each algorithm, if any, is reported in column UB0

while columns UB and LB report the final upper and lower bounds, respectively. An
asterisk in column opt indicates that the instance was solved to optimality. For each
algorithm, we report the percentage gap computed as 100(UB − LB)/UB. We also
indicate the CPU time in seconds.

14

The results show that our algorithm was able to solve 53 of the 60 instances
within a one-hour time limit. For the remaining instances, the final optimality gap is
at most 2.95%. In comparison, the algorithm of Petersen et al. (2010) was only able
to solve 30 instances and the optimality gap for the unsolved instances sometimes
exceeds 10%. Carrabs et al. (2010) only reported results on instances with two stacks
while Lusby et al. (2010) reported results on instances with a number of requests
between 10 and 15. In terms of computing speed, our algorithm is also considerably
better. For the instances that were solved to optimality by at least one other method,
our branch-and-cut algorithm is often faster by one order of magnitude. Finally, we
should also point out that the CPU time limit imposed by Lusby et al. (2010) was
three hours.

In Table 2 we report similar results on a set of 81 instances which were introduced
in the context of the PDTSPL (see Cordeau et al., 2010) and were later adapted for
the DTSPMS by Petersen et al. (2010). Our algorithm was able to solve 69 instances
of these instances, including all those with up to 19 requests and some with 21, 23
and 25 requests. The optimality gap for the unsolved instances is at most 3.06%.
In comparison, the algorithm of Petersen et al. (2010) could solve 46 instances and
failed on one with 15 requests.

Table 3 reports more detailed results on the Petersen and Madsen (2009) instances
with just two stacks and 10, 12 or 14 requests. Using a maximum computing time
of 3 hours, as did Lusby et al. (2010) and Carrabs et al. (2010), we were able to
solve all 60 instances, whereas the other algorithms could solve 44 and 56 instances,
respectively. For most of the instances that were solved by at least one of the other
algorithms, our branch-and-cut is again much faster.

Finally, Table 4 reports summary results for the full set of 220 instances introduced
by Petersen and Madsen (2009). In this table, the instances are divided into 11
groups of 20 instances each. We indicate the number of instances that could be
solved to optimality by each algorithm as well as the average optimality gaps and the
average computing time for each group. A maximum of three hours of computing
time was allowed for solving each instance. Again, we can see that our new method
outperforms the two existing algorithms by solving more instances and by requiring
far less computing time. Our algorithm was capable of solving to optimality 192 of
the instances and the average computing time is about half an hour. The maximum
optimality gap for the unsolved instances is 3.15%. The average optimality gap over
all instances (including those solved to optimality) is just 0.16%. We finally note that
an increase in the height of the stacks has a much larger impact on the difficulty of
the problem than an increase in the number of stacks.

15

7 Conclusions

This paper has introduced a new branch-and-cut algorithm for the DTSPMS. This
algorithm relies on a compact formulation of the problem and the addition of valid
inequalities that can be separated efficiently. Computational experiments performed
on a large set of test instances show that this new algorithm outperforms existing
exact methods in terms of the problem size that can be solved and of the required
computing time.

Acknowledgements

This work was partly supported by the Italian Ministero dell’Istruzione, dell’Università
e della Ricerca (MIUR) and by the Canadian Natural Sciences and Engineering Re-
search Council under grant 227837-09. This support is gratefully acknowledged. We
are also thankful to Jean-François Côté for fruitful discussions and for providing us
with the executable of the algorithm introduced by Côté et al. (2009).

References

N. Ascheuer, M. Fischetti, and M. Grötschel. A polyhedral study of the asymmetric
traveling salesman problem with time windows. Networks, 36:69–79, 2000.

F. Bonomo, S. Mattia, and G. Oriolo. Bounded coloring of co-comparability graphs
and the pickup and delivery tour combination problem. Technical Report 6, DEIS,
Sapienza Università di Roma, Italy, 2010.

F. Carrabs, R. Cerulli, and J.-F. Cordeau. An additive branch-and-bound algorithm
for the pickup and delivery traveling salesman problem with LIFO or FIFO loading.
INFOR, 45:223–238, 2007a.

F. Carrabs, J.-F. Cordeau, and G. Laporte. Variable neighbourhood search for the
pickup and delivery traveling salesman problem with LIFO loading. INFORMS
Journal on Computing, 19:618–632, 2007b.

F. Carrabs, R. Cerulli, and M.G. Speranza. A branch-and-bound algorithm for the
double TSP with two stacks. Technical Report 4, DMI, Università di Salerno, Italy,
http://www.dmi.unisa.it/people/carrabs/www/, 2010.

M. Casazza, A. Ceselli, and M. Nunkesser. Efficient algorithms for the double TSP
with multiple stacks. In Proceedings of 8th Cologne-Twente Workshop on Graphs
and Combinatorial Optimization (CTW09), pages 7–10, Paris, 2009.

16

J.-F. Cordeau, G. Laporte, J.-Y. Potvin, and M.W.P. Savelsbergh. Transportation
on demand. In C. Barnhart and G. Laporte, editors, Transportation, Handbooks
in Operations Research and Management Science 14, pages 429–466. Elsevier, Am-
sterdam, 2007.

J.-F. Cordeau, M. Iori, G. Laporte, and J.J. Salazar-Gonzalez. Branch-and-cut for
the pickup and delivery traveling salesman problem with LIFO loading. Networks,
55:46–59, 2010.

J.-F. Côté, M. Gendreau, and J.-Y. Potvin. Large neighborhood search for the single
vehicle pickup and delivery problem with multiple loading stacks. Technical Report
CIRRELT-2009-47, University of Montreal, 2009.

A. Felipe, M.T. Ortuno, and G. Tirado. The double traveling salesman problem
with multiple stacks: A variable neighborhood search approach. Computers &
Operations Research, 36:2983–2993, 2009a.

A. Felipe, M.T. Ortuno, and G. Tirado. New neighborhood structures for the double
traveling salesman problem with multiple stacks. TOP, 17:190–213, 2009b.

P. Hansen, A. Hertz, and J. Kuplinsky. Bounded vertex colorings of graphs. Discrete
Mathematics, 111:305–312, 1993.

M. Iori and S. Martello. Routing problems with loading constraints. TOP, 18:4–27,
2010.

J. Kelley. Critical path planning and scheduling: Mathematical basis. Operations
Research, 9:296–320, 1961.

R.M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. An exact method for the double
TSP with multiple stacks. International Transactions on Operations Research, 17:
637–652, 2010.

H.L. Petersen and O.B.G. Madsen. The double travelling salesman problem with
multiple stacks. European Journal of Operational Research, 198:139–147, 2009.

H.L. Petersen, C. Archetti, and M.G. Speranza. Exact solutions to the double trav-
elling salesman problem with multiple stacks. Networks, 2010. To appear.

S. Toulouse. Approximability of the multiple stack TSP. Electronic Notes in Discrete
Mathematics, 36:813–820, 2010.

S. Toulouse and R. Wolfler Calvo. On the complexity of the multiple stack TSP,
kSTSP. Lecture Notes in Computer Science, Theory and Applications of Models of
Computation, 5532/2009:360–369, 2009.

17

Table 1: Comparison on 60 benchmark instances (1 CPU hour)
Petersen et al. (2010) Carrabs et al. (2010) Lusby et al. (2010) Branch-and-Cut
Pentium 4, 2.8 GHz Intel Core 2, 2.33 GHz Dell, 1.6 GHz Intel Core 2, 3 GHz

inst. s l n UB0 %gap opt sec UB opt sec UB %gap opt sec UB0 UB LB %gap opt sec

R05 2 4 8 501 0.00% * 0 501 * 0.25 501 501 501 0.00% * 0.0
R06 2 4 8 694 0.00% * 31 694 * 0.51 694 694 694 0.00% * 0.1
R07 2 4 8 487 0.00% * 27 487 * 0.56 487 487 487 0.00% * 0.1
R08 2 4 8 642 0.00% * 38 642 * 0.57 642 642 642 0.00% * 0.1
R09 2 4 8 558 0.00% * 17 558 * 0.76 558 558 558 0.00% * 0.0

R05 2 5 10 546 0.00% * 196 546 * 2.28 546 0.00% * 4 546 546 546 0.00% * 0.3
R06 2 5 10 774 0.00% * 678 774 * 5.66 774 0.00% * 5 774 774 774 0.00% * 1.6
R07 2 5 10 547 0.00% * 115 547 * 1.60 547 0.00% * 1 547 547 547 0.00% * 0.2
R08 2 5 10 670 0.00% * 392 670 * 2.00 670 0.00% * 5 670 670 670 0.00% * 0.7
R09 2 5 10 610 0.00% * 44 610 * 4.65 610 0.00% * 1 610 610 610 0.00% * 0.1

R05 2 6 12 631 7.92% 3600 631 * 172.26 631 0.00% * 2126 631 631 631 0.00% * 176.8
R06 2 6 12 793 2.77% 3600 793 * 111.94 793 0.00% * 310 793 793 793 0.00% * 3.3
R07 2 6 12 593 4.05% 3600 593 * 61.15 593 0.00% * 485 593 593 593 0.00% * 8.5
R08 2 6 12 749 4.65% 3600 749 * 74.96 749 0.13% 10823 749 749 749 0.00% * 30.1
R09 2 6 12 692 0.00% * 1680 692 * 219.22 692 0.00% * 45 692 692 692 0.00% * 1.8

R05 2 7 14 775 7.08% 3600 775 * 3052.79 775 1.98% 10807 775 775 775 0.00% * 392.6
R06 2 7 14 824 5.22% 3600 824 * 2655.48 824 0.73% 10814 824 824 824 0.00% * 33.4
R07 2 7 14 697 6.95% 3600 697 * 341.83 697 2.20% 10822 697 697 697 0.00% * 48.4
R08 2 7 14 824 8.01% 3600 825 3604.46 831 5.73% 10815 824 824 824 0.00% * 672.5
R09 2 7 14 739 1.53% 3600 739 * 1225.67 739 0.00% * 211 739 739 739 0.00% * 5.3

R05 3 4 12 567 0.00% * 7 567 0.00% * 1 567 567 567 0.00% * 0.1
R06 3 4 12 747 0.00% * 15 747 0.00% * 2 747 747 747 0.00% * 0.1
R07 3 4 12 557 0.00% * 90 557 0.00% * 5 557 557 557 0.00% * 0.3
R08 3 4 12 690 0.00% * 7 690 0.00% * 2 690 690 690 0.00% * 0.0
R09 3 4 12 672 0.00% * 6 669 0.00% * 1 669 669 669 0.00% * 0.0

R05 3 5 15 737 0.00% * 2442 737 0.00% * 56 737 737 737 0.00% * 2.6
R06 3 5 15 836 0.00% * 1815 836 0.00% * 47 836 836 836 0.00% * 2.2
R07 3 5 15 690 2.39% 3600 690 0.00% * 415 690 690 690 0.00% * 3.6
R08 3 5 15 826 0.00% * 2028 826 0.00% * 73 826 826 826 0.00% * 3.1
R09 3 5 15 768 0.00% * 666 768 0.00% * 29 768 768 768 0.00% * 2.3

R05 3 6 18 833 6.89% 3600 804 804 804 0.00% * 23.8
R06 3 6 18 871 3.56% 3600 866 866 866 0.00% * 144.6
R07 3 6 18 758 8.08% 3600 752 752 752 0.00% * 119.9
R08 3 6 18 864 4.61% 3600 864 864 864 0.00% * 134.3
R09 3 6 18 796 0.00% * 1995 774 774 774 0.00% * 1.5

R05 3 7 21 900 7.64% 3600 875 875 862 1.49% 3600.4
R06 3 7 21 949 10.41% 3600 901 901 901 0.00% * 1755.8
R07 3 7 21 841 9.45% 3600 836 836 826 1.20% 3600.4
R08 3 7 21 916 9.53% 3600 888 888 881 0.79% 3600.6
R09 3 7 21 891 10.21% 3600 827 827 827 0.00% * 72.1

R05 4 4 16 750 0.00% * 1271 744 744 744 0.00% * 2.3
R06 4 4 16 841 0.00% * 281 821 821 821 0.00% * 0.5
R07 4 4 16 673 0.00% * 3 673 673 673 0.00% * 0.0
R08 4 4 16 819 0.00% * 123 815 815 815 0.00% * 0.4
R09 4 4 16 774 0.00% * 1 755 755 755 0.00% * 0.0

R05 4 5 20 856 5.57% 3600 825 825 825 0.00% * 26.4
R06 4 5 20 894 0.00% * 2347 859 859 859 0.00% * 0.8
R07 4 5 20 795 0.00% * 3542 763 763 763 0.00% * 0.5
R08 4 5 20 853 0.00% * 1614 841 841 841 0.00% * 4.2
R09 4 5 20 818 0.00% * 4 796 796 796 0.00% * 0.1

R05 4 6 24 933 9.62% 3600 867 867 867 0.00% * 474.5
R06 4 6 24 975 10.77% 3600 898 898 898 0.00% * 128.5
R07 4 6 24 916 11.90% 3600 831 831 831 0.00% * 14.4
R08 4 6 24 924 5.25% 3600 904 904 904 0.00% * 98.4
R09 4 6 24 882 6.04% 3600 863 863 861 0.23% 3600.5

R05 4 7 28 984 11.88% 3600 895 895 895 0.00% * 2023.7
R06 4 7 28 1034 10.93% 3600 964 964 951 1.35% 3600.4
R07 4 7 28 1002 12.44% 3600 948 948 920 2.95% 3600.4
R08 4 7 28 1088 15.26% 3600 949 949 949 0.00% * 258.2
R09 4 7 28 975 9.63% 3600 918 918 906 1.31% 3600.4

Totals/Averages 3.84% 30 2157.9 0.16% 53 531.3

18

Table 2: Comparison on 81 instances from the PDTSPL literature (1 CPU hour)
Petersen et al. (2010) Branch-and-Cut
Pentium 4, 2.8 GHz Intel Core 2, 3 GHz

inst. s l n UB LB %gap opt sec UB LB %gap opt sec

a280 3 3 9 585 585 0.00% * 2 585 585 0.00% * 0.1
3 4 11 654 654 0.00% * 51 654 654 0.00% * 0.2
3 5 13 696 696 0.00% * 19 696 696 0.00% * 0.1
3 5 15 792 792 0.00% * 31 792 792 0.00% * 0.1
3 6 17 945 945 0.00% * 2277 945 945 0.00% * 0.4
3 7 19 - 1017 - 3600 1024 1024 0.00% * 0.7
3 7 21 1127 1091 3.21% 3600 1103 1103 0.00% * 2.4
3 8 23 - 1160.5 - 3600 1179 1179 0.00% * 11.7
3 9 25 - 1192 - 3600 1219 1219 0.00% * 49.2

att532 3 3 9 5361 5361 0.00% * 2 5361 5361 0.00% * 0.0
3 4 11 6399 6399 0.00% * 23 6399 6399 0.00% * 0.0
3 5 13 7261 7261 0.00% * 102 7261 7261 0.00% * 0.1
3 5 15 7562 7562 0.00% * 320 7562 7562 0.00% * 0.3
3 6 17 11369 7737 31.95% 3600 7863 7863 0.00% * 1.5
3 7 19 11413 7972 30.16% 3600 8208 8208 0.00% * 14.1
3 7 21 13218 12230 7.48% 3600 12639 12639 0.00% * 86.1
3 8 23 - 12530 - 3600 13006 13006 0.00% * 303.7
3 9 25 - 15709 - 3600 16214 16214 0.00% * 1181.7

brd14051 3 3 9 7897 7897 0.00% * 0 7897 7897 0.00% * 0.0
3 4 11 8064 8064 0.00% * 1 8064 8064 0.00% * 0.0
3 5 13 8079 8079 0.00% * 41 8079 8079 0.00% * 0.1
3 5 15 8196 8196 0.00% * 3 8196 8196 0.00% * 0.2
3 6 17 8300 8226 0.89% 3600 8252 8252 0.00% * 70.3
3 7 19 8434 8394 0.48% 3600 8419 8419 0.00% * 62.8
3 7 21 9109 8400 7.79% 3600 8442 8442 0.00% * 130.0
3 8 23 - 8499 - 3600 8560 8551 0.11% 3600.4
3 9 25 - 8513 - 3600 8644 8588 0.65% 3600.6

d15112 3 3 9 93597 93597 0.00% * 28 93597 93597 0.00% * 0.1
3 4 11 100489 100489 0.00% * 39 100489 100489 0.00% * 0.2
3 5 13 108574 108574 0.00% * 211 108574 108574 0.00% * 0.4
3 5 15 130297 124692 4.30% 3600 127814 127814 0.00% * 3.5
3 6 17 141408 126627 10.45% 3600 131421 131421 0.00% * 47.7
3 7 19 - 130153 - 3600 136488 136488 0.00% * 504.0
3 7 21 188222 132034 29.85% 3600 139965 138437 1.09% 3600.3
3 8 23 - 133448 - 3600 141404 139508 1.34% 3600.4
3 9 25 - 138886 - 3600 149772 145188 3.06% 3600.4

d18512 3 3 9 7951 7951 0.00% * 1 7951 7951 0.00% * 0.1
3 4 11 8023 8023 0.00% * 1 8023 8023 0.00% * 0.0
3 5 13 8034 8034 0.00% * 6 8034 8034 0.00% * 0.0
3 5 15 8098 8098 0.00% * 19 8098 8098 0.00% * 0.0
3 6 17 8567 8124 5.17% 3600 8151 8151 0.00% * 54.7
3 7 19 - 8292 - 3600 8327 8327 0.00% * 120.2
3 7 21 10664 8425 21.00% 3600 8482 8482 0.00% * 1072.3
3 8 23 - 8476 - 3600 8555 8529 0.30% 3600.4
3 9 25 - 8556 - 3600 8672 8607 0.75% 3600.4

fnl4461 3 3 9 3387 3387 0.00% * 1 3387 3387 0.00% * 0.1
3 4 11 3430 3430 0.00% * 9 3430 3430 0.00% * 0.0
3 5 13 3628 3628 0.00% * 185 3628 3628 0.00% * 1.0
3 5 15 3796 3796 0.00% * 192 3796 3796 0.00% * 0.3
3 6 17 3853 3837 0.42% 3600 3853 3853 0.00% * 6.6
3 7 19 5344 3981 25.52% 3600 4027 4027 0.00% * 92.5
3 7 21 4589 4058 11.58% 3600 4147 4147 0.00% * 813.1
3 8 23 - 4170 - 3600 4315 4273 0.97% 3600.4
3 9 25 - 4253 - 3600 4427 4349 1.76% 3600.6

nrw1379 3 3 9 4572 4572 0.00% * 3 4572 4572 0.00% * 0.2
3 4 11 4733 4733 0.00% * 17 4733 4733 0.00% * 0.0
3 5 13 4872 4872 0.00% * 273 4872 4872 0.00% * 0.9
3 5 15 4984 4984 0.00% * 1230 4984 4984 0.00% * 2.2
3 6 17 5355 5195 2.99% 3600 5212 5212 0.00% * 1.8
3 7 19 - 5245 - 3600 5320 5320 0.00% * 1099.6
3 7 21 6114 5434 11.12% 3600 5543 5535 0.14% 3600.4
3 8 23 - 5481 - 3600 5592 5582 0.18% 3600.4
3 9 25 - 5862 - - 6056 5961 1.57% 3600.5

pr1002 3 3 9 21498 21498 0.00% * 0 21498 21498 0.00% * 0.0
3 4 11 22977 22977 0.00% * 15 22977 22977 0.00% * 0.1
3 5 13 25087 25087 0.00% * 184 25087 25087 0.00% * 0.1
3 5 15 25899 25899 0.00% * 929 25899 25899 0.00% * 0.3
3 6 17 27246 27246 0.00% * 731 27246 27246 0.00% * 0.2
3 7 19 28196 28196 0.00% * 1733 28196 28196 0.00% * 0.5
3 7 21 29875 29875 0.00% * 5 29875 29875 0.00% * 0.1
3 8 23 31463 31463 0.00% * 133 31463 31463 0.00% * 0.1
3 9 25 32319 32319 0.00% * 5 32319 32319 0.00% * 0.1

ts225 3 3 9 34000 34000 0.00% * 0 34000 34000 0.00% * 0.0
3 4 11 43000 43000 0.00% * 443 43000 43000 0.00% * 0.2
3 5 13 48440 48400 0.00% * 2 48440 48440 0.00% * 0.0
3 5 15 50580 50580 0.00% * 4 50580 50580 0.00% * 0.1
3 6 17 50881 50881 0.00% * 2 50881 50881 0.00% * 0.1
3 7 19 51371 51371 0.00% * 17 51371 51371 0.00% * 0.1
3 7 21 52322 52322 0.00% * 8 52322 52322 0.00% * 0.1
3 8 23 54460 54460 0.00% * 6 54460 54460 0.00% * 0.1
3 9 25 62688 62688 0.00% * 808 62688 62688 0.00% * 1.1

Totals/Averages 46 0.15% 69 604.3

19

Table 3: Further comparison on 60 instances with two stacks (3 CPU hours)
Lusby et al. (2010) Carrabs et al. (2010) Branch-and-Cut

Dell, 1.6 GHz Intel Core 2, 2.33 GHz Intel Core 2, 3 GHz
inst. s l n %gap opt sec opt sec UB LB %gap opt sec

R00 2 5 10 0.00% * 5 * 5.12 680 680 0.00% * 0.6
R01 2 5 10 0.00% * 3 * 4.11 704 704 0.00% * 0.5
R02 2 5 10 0.00% * 6 * 7.57 629 629 0.00% * 1.6
R03 2 5 10 0.00% * 1 * 0.98 610 610 0.00% * 0.1
R04 2 5 10 0.00% * 3 * 1.28 614 614 0.00% * 0.2
R05 2 5 10 0.00% * 4 * 2.29 546 546 0.00% * 0.3
R06 2 5 10 0.00% * 5 * 5.72 774 774 0.00% * 1.6
R07 2 5 10 0.00% * 1 * 1.61 547 547 0.00% * 0.2
R08 2 5 10 0.00% * 5 * 2.02 670 670 0.00% * 0.7
R09 2 5 10 0.00% * 1 * 4.68 610 610 0.00% * 0.1
R10 2 5 10 0.00% * 7 * 0.88 624 624 0.00% * 0.4
R11 2 5 10 0.00% * 2 * 0.56 536 536 0.00% * 0.1
R12 2 5 10 0.00% * 3 * 1.72 678 678 0.00% * 0.3
R13 2 5 10 0.00% * 2 * 1.30 654 654 0.00% * 0.2
R14 2 5 10 0.00% * 13 * 4.78 603 603 0.00% * 1.3
R15 2 5 10 0.00% * 2 * 2.52 586 586 0.00% * 0.3
R16 2 5 10 0.00% * 114 * 0.99 535 535 0.00% * 3.8
R17 2 5 10 0.00% * 11 * 4.52 729 729 0.00% * 1.1
R18 2 5 10 0.00% * 1 * 0.58 616 616 0.00% * 0.1
R19 2 5 10 0.00% * 1 * 0.58 650 650 0.00% * 0.1

R00 2 6 12 0.00% * 142 * 108.48 726 726 0.00% * 8.3
R01 2 6 12 0.00% * 17 * 68.51 741 741 0.00% * 1.8
R02 2 6 12 0.00% * 2432 * 197.68 660 660 0.00% * 42.8
R03 2 6 12 0.00% * 4 * 3.43 690 690 0.00% * 0.2
R04 2 6 12 0.00% * 1151 * 62.28 659 659 0.00% * 40.7
R05 2 6 12 0.00% * 2126 * 173.91 631 631 0.00% * 176.8
R06 2 6 12 0.00% * 310 * 109.72 793 793 0.00% * 3.3
R07 2 6 12 0.00% * 485 * 61.80 593 593 0.00% * 8.5
R08 2 6 12 0.13% 10823 * 75.36 749 749 0.00% * 30.1
R09 2 6 12 0.00% * 45 * 220.29 692 692 0.00% * 1.8
R10 2 6 12 0.00% * 2452 * 16.62 663 663 0.00% * 12.0
R11 2 6 12 0.00% * 356 * 53.16 625 625 0.00% * 17.9
R12 2 6 12 0.00% * 7 * 7.32 741 741 0.00% * 0.3
R13 2 6 12 0.00% * 16 * 8.10 694 694 0.00% * 1.4
R14 2 6 12 0.00% * 205 * 110.49 680 680 0.00% * 4.2
R15 2 6 12 0.00% * 306 * 85.37 628 628 0.00% * 20.6
R16 2 6 12 0.00% * 3537 * 4.04 610 610 0.00% * 25.4
R17 2 6 12 0.00% * 3832 * 551.97 780 780 0.00% * 92.3
R18 2 6 12 0.00% * 16 * 14.00 735 735 0.00% * 0.7
R19 2 6 12 0.00% * 171 * 150.80 789 789 0.00% * 9.0

R00 2 7 14 1.18% 10838 * 7592.21 774 774 0.00% * 156.6
R01 2 7 14 0.00% * 653 * 1787.94 761 761 0.00% * 41.9
R02 2 7 14 1.47% 10863 * 5638.48 690 690 0.00% * 125.5
R03 2 7 14 0.13% 10807 * 423.42 791 791 0.00% * 24.1
R04 2 7 14 6.47% 10805 * 6437.22 756 756 0.00% * 3815.1
R05 2 7 14 1.98% 10807 * 3040.04 775 775 0.00% * 392.6
R06 2 7 14 0.73% 10814 * 2657.65 824 824 0.00% * 33.4
R07 2 7 14 2.20% 10822 * 339.85 697 697 0.00% * 48.4
R08 2 7 14 5.73% 10815 10802.00 824 824 0.00% * 672.5
R09 2 7 14 0.00% * 211 * 1209.25 739 739 0.00% * 5.3
R10 2 7 14 2.09% 10845 * 3924.84 733 733 0.00% * 390.8
R11 2 7 14 2.84% 10815 * 3658.66 725 725 0.00% * 989.0
R12 2 7 14 1.01% 10814 * 343.56 803 803 0.00% * 86.5
R13 2 7 14 0.00% * 1499 * 240.62 746 746 0.00% * 26.4
R14 2 7 14 - 10841 10802.00 765 765 0.00% * 10134.9
R15 2 7 14 0.00% * 1152 * 436.30 765 765 0.00% * 22.1
R16 2 7 14 0.88% 10826 * 284.46 685 685 0.00% * 66.6
R17 2 7 14 4.41% 10860 10802.00 818 818 0.00% * 956.7
R18 2 7 14 0.00% * 3607 * 757.32 774 774 0.00% * 31.2
R19 2 7 14 1.81% 10839 10802.00 836 836 0.00% * 149.3

Totals/Averages 0.56% 44 3302.60 56 1401.95 0.00% 60 311.3

20

Table 4: Aggregate comparison on 220 benchmark instances (3 CPU hours)
Lusby et al. (2010) Carrabs et al. (2010) Branch-and-Cut

Dell, 1.6 GHz Intel Core 2, 2.33 GHz Intel Core 2, 3 GHz
s l n %gap opt sec opt sec %gap opt sec

2 5 10 0.00% 20 9.5 20 2.7 0.00% 20 0.7
2 6 12 0.01% 19 1421.7 20 104.2 0.00% 20 24.9
2 7 14 1.73% 5 8476.7 16 4099.0 0.00% 20 908.4
3 4 12 0.00% 20 4.0 0.00% 20 0.2
3 5 15 0.00% 20 492.2 0.00% 20 13.5
3 6 18 0.00% 20 275.8
3 7 21 0.78% 8 8001.1
4 4 16 0.00% 20 0.7
4 5 20 0.00% 20 15.3
4 6 24 0.00% 20 1287.6
4 7 28 0.97% 4 9264.9

Totals/Averages 84 56 0.16% 192 1799.4

21

